1
|
Zhang Z, Zhao M, Wang Q, Wang X, Wang Y, Ge Y, Wu Z, Wang W, Shan L. Forkhead box protein FOXK1 disrupts the circadian rhythm to promote breast tumorigenesis in response to insulin resistance. Cancer Lett 2024; 599:217147. [PMID: 39094826 DOI: 10.1016/j.canlet.2024.217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Pourali G, Ahmadzade AM, Arastonejad M, Pourali R, Kazemi D, Ghasemirad H, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Avan A. The circadian clock as a potential biomarker and therapeutic target in pancreatic cancer. Mol Cell Biochem 2024; 479:1243-1255. [PMID: 37405534 DOI: 10.1007/s11010-023-04790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer (PC) has a very high mortality rate globally. Despite ongoing efforts, its prognosis has not improved significantly over the last two decades. Thus, further approaches for optimizing treatment are required. Various biological processes oscillate in a circadian rhythm and are regulated by an endogenous clock. The machinery controlling the circadian cycle is tightly coupled with the cell cycle and can interact with tumor suppressor genes/oncogenes; and can therefore potentially influence cancer progression. Understanding the detailed interactions may lead to the discovery of prognostic and diagnostic biomarkers and new potential targets for treatment. Here, we explain how the circadian system relates to the cell cycle, cancer, and tumor suppressor genes/oncogenes. Furthermore, we propose that circadian clock genes may be potential biomarkers for some cancers and review the current advances in the treatment of PC by targeting the circadian clock. Despite efforts to diagnose pancreatic cancer early, it still remains a cancer with poor prognosis and high mortality rates. While studies have shown the role of molecular clock disruption in tumor initiation, development, and therapy resistance, the role of circadian genes in pancreatic cancer pathogenesis is not yet fully understood and further studies are required to better understand the potential of circadian genes as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, 37 Kent Street, QLD, 4102, Australia.
| |
Collapse
|
3
|
Alvarez-Frutos L, Barriuso D, Duran M, Infante M, Kroemer G, Palacios-Ramirez R, Senovilla L. Multiomics insights on the onset, progression, and metastatic evolution of breast cancer. Front Oncol 2023; 13:1292046. [PMID: 38169859 PMCID: PMC10758476 DOI: 10.3389/fonc.2023.1292046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is the most common malignant neoplasm in women. Despite progress to date, 700,000 women worldwide died of this disease in 2020. Apparently, the prognostic markers currently used in the clinic are not sufficient to determine the most appropriate treatment. For this reason, great efforts have been made in recent years to identify new molecular biomarkers that will allow more precise and personalized therapeutic decisions in both primary and recurrent breast cancers. These molecular biomarkers include genetic and post-transcriptional alterations, changes in protein expression, as well as metabolic, immunological or microbial changes identified by multiple omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, glycomics, metabolomics, lipidomics, immunomics and microbiomics). This review summarizes studies based on omics analysis that have identified new biomarkers for diagnosis, patient stratification, differentiation between stages of tumor development (initiation, progression, and metastasis/recurrence), and their relevance for treatment selection. Furthermore, this review highlights the importance of clinical trials based on multiomics studies and the need to advance in this direction in order to establish personalized therapies and prolong disease-free survival of these patients in the future.
Collapse
Affiliation(s)
- Lucia Alvarez-Frutos
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Daniel Barriuso
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Mercedes Duran
- Laboratory of Molecular Genetics of Hereditary Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Mar Infante
- Laboratory of Molecular Genetics of Hereditary Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, Paris, France
| | - Roberto Palacios-Ramirez
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Laura Senovilla
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Zacchini F, Venturi G, De Sanctis V, Bertorelli R, Ceccarelli C, Santini D, Taffurelli M, Penzo M, Treré D, Inga A, Dassi E, Montanaro L. Human dyskerin binds to cytoplasmic H/ACA-box-containing transcripts affecting nuclear hormone receptor dependence. Genome Biol 2022; 23:177. [PMID: 35996163 PMCID: PMC9394076 DOI: 10.1186/s13059-022-02746-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
Background Dyskerin is a nuclear protein involved in H/ACA box snoRNA-guided uridine modification of RNA. In humans, its defective function is associated with cancer development and induces specific post-transcriptional alterations of gene expression. In this study, we seek to unbiasedly identify mRNAs regulated by dyskerin in human breast cancer-derived cells. Results We find that dyskerin depletion affects the expression and the association with polysomes of selected mRNA isoforms characterized by the retention of H/ACA box snoRNA-containing introns. These snoRNA retaining transcripts (snoRTs) are bound by dyskerin in the cytoplasm in the form of shorter 3′ snoRT fragments. We then characterize the whole cytoplasmic dyskerin RNA interactome and find both H/ACA box snoRTs and protein-coding transcripts which may be targeted by the snoRTs’ guide properties. Since a fraction of these protein-coding transcripts is involved in the nuclear hormone receptor binding, we test to see if this specific activity is affected by dyskerin. Obtained results indicate that dyskerin dysregulation may alter the dependence on nuclear hormone receptor ligands in breast cancer cells. These results are paralleled by consistent observations on the outcome of primary breast cancer patients stratified according to their tumor hormonal status. Accordingly, experiments in nude mice show that the reduction of dyskerin levels in estrogen-dependent cells favors xenograft development in the absence of estrogen supplementation. Conclusions Our work suggests a cytoplasmic function for dyskerin which could affect mRNA post-transcriptional networks relevant for nuclear hormone receptor functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02746-3.
Collapse
Affiliation(s)
- Federico Zacchini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum - Università di Bologna, I-40138, Bologna, Italy.,Centro di Ricerca Biomedica Applicata - CRBA, Università̀ di Bologna, Policlinico di Sant'Orsola, I-40138, Bologna, Italy
| | - Giulia Venturi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum - Università di Bologna, I-40138, Bologna, Italy.,Centro di Ricerca Biomedica Applicata - CRBA, Università̀ di Bologna, Policlinico di Sant'Orsola, I-40138, Bologna, Italy
| | - Veronica De Sanctis
- Dipartimento di Biologia Cellulare, Computazionale e Integrata (CIBIO), Università di Trento, I-38123, Trento, Italy
| | - Roberto Bertorelli
- Dipartimento di Biologia Cellulare, Computazionale e Integrata (CIBIO), Università di Trento, I-38123, Trento, Italy
| | - Claudio Ceccarelli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum - Università di Bologna, I-40138, Bologna, Italy.,Unità Operativa di Anatomia e Istologia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138, Bologna, Italy
| | - Donatella Santini
- Unità Operativa di Anatomia e Istologia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138, Bologna, Italy
| | - Mario Taffurelli
- Unità Operativa di Chirurgia Senologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138, Bologna, Italy.,Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum - Università di Bologna, I-40138, Bologna, Italy
| | - Marianna Penzo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum - Università di Bologna, I-40138, Bologna, Italy.,Centro di Ricerca Biomedica Applicata - CRBA, Università̀ di Bologna, Policlinico di Sant'Orsola, I-40138, Bologna, Italy
| | - Davide Treré
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum - Università di Bologna, I-40138, Bologna, Italy.,Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138, Bologna, Italy
| | - Alberto Inga
- Dipartimento di Biologia Cellulare, Computazionale e Integrata (CIBIO), Università di Trento, I-38123, Trento, Italy
| | - Erik Dassi
- Dipartimento di Biologia Cellulare, Computazionale e Integrata (CIBIO), Università di Trento, I-38123, Trento, Italy
| | - Lorenzo Montanaro
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum - Università di Bologna, I-40138, Bologna, Italy. .,Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138, Bologna, Italy.
| |
Collapse
|
5
|
Abstract
Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several metabolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have potential utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
6
|
Xue J, Yi J, Zhu X. Knockdown of UCHL3 inhibits esophageal squamous cell carcinoma progression by reducing CRY2 methylation. Hum Cell 2022; 35:528-541. [PMID: 35088238 DOI: 10.1007/s13577-021-00660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
UCHL3 (Ubiquitin carboxyl-terminal hydrolase L3), a member of deubiquitinating enzymes, has been implicated in various cancers. However, the role of UCHL3 in esophageal squamous cell carcinoma (ESCC) remains unknown. In the current study, we aimed to investigate the role of UCHL3 in ESCC growth and migration, and whether UCHL3 could modulate CRY2 methylation through FOXM1. The expression of UCHL3 and CRY2 in ESCC tissues was assessed using qRT-PCR, western blotting and immunohistochemistry (IHC). Cell viability was determined by CCK-8 and colony formation assays. Hoechst 33342 and flow cytometry were used to detect cell apoptosis. Transwell assay was performed to investigate cell migration and invasion. In vivo animal model was used to assess cell tumorigenesis. Methylation-Specific PCR (MSP) was applied to detect CRY2 methylation in the promoter region. The results showed that UCHL3 expression was elevated in ESCC tissues and cells, while CRY2 expression was decreased. UCHL3 silencing inhibited cell viability, invasion, migration and induced cell apoptosis in vitro, repressed tumor growth in vivo, and increased CRY2 expression and decreased FOXM1 expression. In addition, UCHL3 knockdown decreased CRY2 methylation through downregulating FOXM1, leading to an increase in the expression of CRY2. Moreover, CRY2 silencing abolished UCHL3 deficiency-mediated inhibition in cell growth and migration. In summary, this study reveals that knockdown of UCHL3 inhibits ESCC growth and migration by reducing CRY2 methylation through downregulation of FOXM1 expression.
Collapse
Affiliation(s)
- Jijun Xue
- Department of Thoracic Surgery, Gansu Provincial Cancer Hospital, Lanzhou , 730050, Gansu, China
| | - Jinyuan Yi
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhong Shan 2 Road, Youjiang District, Baise, 533000, Guangxi Zhuang Autonomous Region, China.
| | - Xiaolong Zhu
- Department of Cardiothoracic Surgery, Qingyang People's Hospital, Qingyang, 745000, Gansu, China
| |
Collapse
|
7
|
Vietri MT, D'Elia G, Benincasa G, Ferraro G, Caliendo G, Nicoletti GF, Napoli C. DNA methylation and breast cancer: A way forward (Review). Int J Oncol 2021; 59:98. [PMID: 34726251 DOI: 10.3892/ijo.2021.5278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/01/2021] [Indexed: 11/05/2022] Open
Abstract
The current management of breast cancer (BC) lacks specific non‑invasive biomarkers able to provide an early diagnosis of the disease. Epigenetic‑sensitive signatures are influenced by environmental exposures and are mediated by direct molecular mechanisms, mainly guided by DNA methylation, which regulate the interplay between genetic and non‑genetic risk factors during cancerogenesis. The inactivation of tumor suppressor genes due to promoter hypermethylation is an early event in carcinogenesis. Of note, targeted tumor suppressor genes are frequently hypermethylated in patient‑derived BC tissues and peripheral blood biospecimens. In addition, epigenetic alterations in triple‑negative BC, as the most aggressive subtype, have been identified. Thus, detecting both targeted and genome‑wide DNA methylation changes through liquid‑based assays appears to be a useful clinical strategy for early detection, more accurate risk stratification and a personalized prediction of therapeutic response in patients with BC. Of note, the DNA methylation profile may be mapped by isolating the circulating tumor DNA from the plasma as a more accessible biospecimen. Furthermore, the sensitivity to treatment with chemotherapy, hormones and immunotherapy may be altered by gene‑specific DNA methylation, suggesting novel potential drug targets. Recently, the use of epigenetic drugs administered alone and/or with anticancer therapies has led to remarkable results, particularly in patients with BC resistant to anticancer treatment. The aim of the present review was to provide an update on DNA methylation changes that are potentially involved in BC development and their putative clinical utility in the fields of diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giovanna D'Elia
- Unit of Clinical and Molecular Pathology, AOU, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Gemma Caliendo
- Unit of Clinical and Molecular Pathology, AOU, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| |
Collapse
|
8
|
Nagariya N, Chaudhari K, Vasu VT. Circadian disruption in lung cancer. Chronobiol Int 2021; 38:1797-1808. [PMID: 34369216 DOI: 10.1080/07420528.2021.1963759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite major developments in lung cancer investigations and the progress of innovative oncology treatments in recent decades, lung cancer continues to be the predominant cause of cancer-related mortality globally, with over a million deaths each year. This highlights the urgent need to develop a deeper understanding of the current state of cancer care. At the environmental and cellular levels, circadian rhythms are closely associated with living organisms. In humans, the suprachiasmatic nucleus is the principal circadian pacemaker. Circadian gene feedback loops regulate the clock, connecting peripheral tissue metabolism, cell proliferation, DNA repair, and cell death to energy homeostasis, physical activity, and neurohormonal regulation at the organismal level. Endogenous circadian homeostasis has been frequently disturbed in modern civilizations, resulting in a higher risk of many disorders, including lung cancer. Despite major developments in lung cancer investigations and the progress of innovative oncology treatments in recent decades, lung cancer continues to be the predominant cause of cancer-related mortality globally, with over a million deaths each year. This highlights the urgent need to develop a deeper understanding of the current state of cancer care. At the environmental and cellular levels, circadian rhythms are closely associated with living organisms. In humans, the suprachiasmatic nucleus is the principal circadian pacemaker. Circadian gene feedback loops regulate the clock, connecting peripheral tissue metabolism, cell proliferation, DNA repair, and cell death to energy homeostasis, physical activity, and neurohormonal regulation at the organismal level. Endogenous circadian homeostasis has been frequently disturbed in modern civilizations, resulting in a higher risk of many disorders, including lung cancer. The mammalian circadian clock controls metabolism and cell division, and disruption of these processes may lead to cancer pathogenesis. Furthermore, circadian disturbance has recently been identified as a self-regulating cancer risk factor and is listed as a carcinogen. The theory that both somatic and systemic disturbances of circadian rhythms are related to a higher risk of lung cancer development and poor prognosis is addressed in this study. The chronotherapy principles hold much more promise for enhancing the lung cancer care options currently available. Developing a better understanding of the molecular interactions that control the physiological equilibrium between both the circadian rhythm and the cycle of cell division could significantly influence the development of novel treatments for lung cancer and other diseases.
Collapse
Affiliation(s)
- Nidhi Nagariya
- Genomics and Systems Biology Lab, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kaushal Chaudhari
- Genomics and Systems Biology Lab, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Vihas T Vasu
- Genomics and Systems Biology Lab, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India.,Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
9
|
Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs. Molecules 2020; 25:molecules25214937. [PMID: 33114496 PMCID: PMC7663518 DOI: 10.3390/molecules25214937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian rhythms are an intrinsic timekeeping system that regulates numerous physiological, biochemical, and behavioral processes at intervals of approximately 24 h. By regulating such processes, the circadian rhythm allows organisms to anticipate and adapt to continuously changing environmental conditions. A growing body of evidence shows that disruptions to the circadian rhythm can lead to various disorders, including cancer. Recently, crucial knowledge has arisen regarding the essential features that underlie the overt circadian rhythm and its influence on physiological outputs. This knowledge suggests that specific small molecules can be utilized to control the circadian rhythm. It has been discovered that these small molecules can regulate circadian-clock-related disorders such as metabolic, cardiovascular, inflammatory, as well as cancer. This review examines the potential use of small molecules for developing new drugs, with emphasis placed on recent progress that has been made regarding the identification of small-molecule clock modulators and their potential use in treating cancer.
Collapse
|
10
|
Zhang J, Lv H, Ji M, Wang Z, Wu W. Low circadian clock genes expression in cancers: A meta-analysis of its association with clinicopathological features and prognosis. PLoS One 2020; 15:e0233508. [PMID: 32437452 PMCID: PMC7241715 DOI: 10.1371/journal.pone.0233508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Per1, Per2, Per3, Cry1, Cry2, Bmal1, Npas2 and CLOCK genes are the eight core circadian clock genes. Low expression of these circadian clock genes plays an important role in the progression of cancers. However, its clinicopathological and prognostic value in patients with cancers remains controversial and inconclusive. We performed a meta-analysis of studies assessing the clinicopathological and prognostic significance of low expression of these genes in cancers. Methods Relevant studies were searched from the Cochrane Central Register of Controlled Trials, Embase, EBSCO, Ovid, PubMed, Science Direct, Wiley Online Library database, CNKI and Wan Fang database. The meta-analysis was performed by using STATA version 12 software. A random-effect model was employed to evaluate all pooled hazard ratios (HRs) and odd ratios (ORs). Results A total of 36 studies comprising 7476 cases met the inclusion criteria. Meta-analysis suggested that low expression of Per1 was associated with poor differentiation (Per1: OR=2.30, 95%CI: 1.36∼3.87, P=0.002) and deeper invasion depth (Per1: OR=2.12, 95%CI: 1.62∼2.77, Ρ<0.001); low Per2 expression was correlated with poor differentiation (Per2: OR=2.41, 95%CI: 1.53∼3.79, Ρ<0.001), worse TNM stage (Per2:OR=3.47, 95%CI: 1.88∼6.42, P<0.001) and further metastasis (Per2:OR=2.35, 95%CI: 1.35∼4.11, Ρ=0.003). Furthermore, the results revealed that low expressions of Per1 and Per2 were also correlated with poor overall survival of cancers (Per1: HR=1.35, 95%CI: 1.06∼1.72, P=0.014; Per2: HR=1.43, 95%CI: 1.10∼1.85, P=0.007). Subgroup analysis indicated that low Per1 and Per2 expressions were especially associated with poor prognosis of gastrointestinal caners (Per1: HR=1.33, 95%CI: 1.14∼1.55, Ρ<0.001, Ι2=4.2%; Per2: HR=1.62, 95%CI: 1.25∼2.18, P<0.001, I2=0.0%). Conclusions Our study suggested that low Per1, Per2 and Npas2 expression played a distinct and crucial role in progression of cancers. Low expressions of Per1 and Per2 could serve as unfavorable indicators for cancers prognosis, especially for gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiangguo Zhang
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (JZ); (WW)
| | - Hong Lv
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
| | - Mingzhu Ji
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
| | - Zhimo Wang
- Department of Gastroenterology, Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Wenqing Wu
- Shekou People’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (JZ); (WW)
| |
Collapse
|
11
|
Lesicka M, Jabłońska E, Wieczorek E, Seroczyńska B, Kalinowski L, Skokowski J, Reszka E. A different methylation profile of circadian genes promoter in breast cancer patients according to clinicopathological features. Chronobiol Int 2019; 36:1103-1114. [PMID: 31179760 DOI: 10.1080/07420528.2019.1617732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One of the supposed mechanisms that may lead to breast cancer (BC) is an alteration of circadian gene expression and DNA methylation. We undertook an integrated approach to identify methylation pattern of core circadian promoter regions in BC patients with regard to clinical features. We performed a quantitative methylation-specific real-time PCR analysis of a promoter methylation profile in 107 breast tumor and matched non-tumor tissues. A panel of circadian genes CLOCK, BMAL1, PERIOD (PER1, 2, 3), CRYPTOCHROME (CRY1, 2) and TIMELESS as well as their association with clinicopathological characteristics were included in the analysis. Three out of the eight analyzed genes exhibited marked hypermethylation (PER1, 2, 3), whereas CLOCK, BMAL1, CRY2 showed significantly lower promoter CpG methylation in the BC tissues when compared to the non-tumor tissues. Among variously methylated genes we found an association between the elevated methylation level of PERs promoter region and molecular subtypes, histological subtypes and tumor grading of BC. Methylation status may be associated with a gene expression level of circadian genes in BC patients. An aberrant methylation pattern in circadian genes in BC may provide information that could be used as novel biomarkers in clinics and molecular epidemiology as well as play an important role in BC etiology.
Collapse
Affiliation(s)
- Monika Lesicka
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Ewa Jabłońska
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Edyta Wieczorek
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Barbara Seroczyńska
- b Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Medical University of Gdansk , Gdansk , Poland
| | - Leszek Kalinowski
- b Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Medical University of Gdansk , Gdansk , Poland.,c Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL) , Gdansk , Poland
| | - Jarosław Skokowski
- b Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Medical University of Gdansk , Gdansk , Poland.,c Department of Medical Laboratory Diagnostics and Bank of Frozen Tissues and Genetic Specimens , Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL) , Gdansk , Poland.,d Department of Surgical Oncology , Medical University of Gdansk , Gdansk , Poland
| | - Edyta Reszka
- a Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| |
Collapse
|
12
|
Rahman S, Kraljević Pavelić S, Markova-Car E. Circadian (De)regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20112662. [PMID: 31151182 PMCID: PMC6600143 DOI: 10.3390/ijms20112662] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancer encompass different malignancies that develop in and around the throat, larynx, nose, sinuses and mouth. Most head and neck cancers are squamous cell carcinomas (HNSCC) that arise in the flat squamous cells that makeup the thin layer of tissue on the surface of anatomical structures in the head and neck. Each year, HNSCC is diagnosed in more than 600,000 people worldwide, with about 50,000 new cases. HNSCC is considered extremely curable if detected early. But the problem remains in treatment of inoperable cases, residues or late stages. Circadian rhythm regulation has a big role in developing various carcinomas, and head and neck tumors are no exception. A number of studies have reported that alteration in clock gene expression is associated with several cancers, including HNSCC. Analyses on circadian clock genes and their association with HNSCC have shown that expression of PER1, PER2, PER3, CRY1, CRY2,CKIε, TIM, and BMAL1 are deregulated in HNSCC tissues. This review paper comprehensively presents data on deregulation of circadian genes in HNSCC and critically evaluates their potential diagnostics and prognostics role in this type of pathology.
Collapse
Affiliation(s)
- Sadia Rahman
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Elitza Markova-Car
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| |
Collapse
|
13
|
Qiu M, Chen YB, Jin S, Fang XF, He XX, Xiong ZF, Yang SL. Research on circadian clock genes in non-small-cell lung carcinoma. Chronobiol Int 2019; 36:739-750. [PMID: 31014124 DOI: 10.1080/07420528.2018.1509080] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian clock genes have become a hot topic in cancer research in recent years, and more and more studies are showing that clock genes are involved in regulating cell proliferation cycle and apoptosis of malignant tumors, neuroendocrine and immune function, and other processes. Lung cancer is a malignant tumor with increasing incidence worldwide. The pathogenesis of lung cancer is extremely complicated and includes genetic factors, living environment, and smoking, and the occurrence of lung cancer is related to the regulation of many oncogenes and tumor suppressor genes. But there are few studies on clock genes in lung cancer. Studies on clock genes may help to better understand the mechanism of lung cancer development for an improved treatment. The expressions of all 14 kinds of clock genes in adenocarcinoma (ADC) and squamous cell carcinoma (SCC), two main kinds of non-small-cell lung cancer (NSCLC), were studied based on integration and analysis of data from The Cancer Genome Atlas (TCGA) to show the association between clock gene expression and prognosis of cancer patients. Analysis of TCGA data indicated that overexpression of Cry2, BMAL1, and RORA with underexpression of Timeless and NPAS2 was associated with a favorable prognosis of ADC, and the expression of NPAS2 was associated with the time of patient survival. Additionally, the expression of Cry2 was related to TNM stage. In SCC, high expression of DEC1 was correlated with poor overall survival in patients and the expression of Timeless was associated with the time of patient survival. In NSCLC, circadian clock genes constitute cancer circadian rhythm by interacting with each other, showing that asynchrony with normal tissues, which collectively controlling the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Mengjun Qiu
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Yao-Bing Chen
- b Institute of Pathology, Tongji Hospital, Tongji Medical College , Huangzhong University of Science and Technology , Wuhan , China
| | - Si Jin
- c Department of Geriatric Medicine , Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xie-Fan Fang
- d Department of Pediatrics , College of Medicine, University of Florida , Gainesville , FL , USA
| | - Xiao-Xiao He
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zhi-Fan Xiong
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Sheng-Li Yang
- e Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
14
|
Kahl KG, Stapel B, Frieling H. Link between depression and cardiovascular diseases due to epigenomics and proteomics: Focus on energy metabolism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:146-157. [PMID: 30194950 DOI: 10.1016/j.pnpbp.2018.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
Major depression is the most common mental disorder and a leading cause of years lived with disability. In addition to the burden attributed to depressive symptoms and reduced daily life functioning, people with major depression are at increased risk of premature mortality, particularly due to cardiovascular diseases. Several studies point to a bi-directional relation between major depression and cardiovascular diseases, thereby indicating that both diseases may share common pathophysiological pathways. These include lifestyle factors (e.g. physical activity, smoking behavior), dysfunctions of endocrine systems (e.g. hypothalamus-pituitary adrenal axis), and a dysbalance of pro- and anti-inflammatory factors. Furthermore, recent research point to the role of epigenomic and proteomic factors, that are reviewed here with a particular focus on the mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany.
| | - Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| |
Collapse
|
15
|
Orhan T, Nielsen PB, Hviid TVF, Rosen AW, Gögenür I. Expression of Circadian Clock Genes in Human Colorectal Cancer Tissues Using Droplet Digital PCR. Cancer Invest 2019; 37:90-98. [PMID: 30732490 DOI: 10.1080/07357907.2019.1571079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increasing evidence indicates that disruption of circadian rhythms may be directly linked to cancer. Here we report that the expression levels of the core clock genes Per1 and Per3 measured by droplet digital polymerase chain reaction are significantly decreased in tumour tissue from 16 patients undergoing colorectal cancer surgery compared to paired normal mucosa. No differences were observed in the expression of Per2, Bmal1, and Clock. In conclusion, abnormal expression levels of the clock genes Per1 and Per3 in CRC tissue may be related to tumourigenesis and may provide future diagnostic and prognostic information.
Collapse
Affiliation(s)
- Tugba Orhan
- a Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen N , Denmark
| | - Peter Böhm Nielsen
- b Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry , Zealand University Hospital, University of Copenhagen , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- b Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry , Zealand University Hospital, University of Copenhagen , Roskilde , Denmark
| | - Andreas Weinberger Rosen
- c Center for Surgical Science, Department of Surgery , Zealand University Hospital, University of Copenhagen , Koege , Denmark
| | - Ismail Gögenür
- c Center for Surgical Science, Department of Surgery , Zealand University Hospital, University of Copenhagen , Koege , Denmark
| |
Collapse
|
16
|
Fang M, Ohman Strickland PA, Kang HG, Zarbl H. Uncoupling genotoxic stress responses from circadian control increases susceptibility to mammary carcinogenesis. Oncotarget 2018; 8:32752-32768. [PMID: 28427145 PMCID: PMC5464825 DOI: 10.18632/oncotarget.15678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/09/2017] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that chemopreventive methylselenocysteine (MSC) prevents N-Nitroso-N-methylurea (NMU)-induced mammary carcinogenesis in the susceptible Fischer 344 (F344) rats by enhancing NAD+-dependent SIRT1 activity, restoring circadian expression of Period 2 (Per2) and circadian controlled genes. Here, we show that compared to the genetically resistant Copenhagen (COP) rat strain, mammary glands of the F344 rats have a 4-hour phase delay in circadian expression of Per2. Consequently, F344 rats failed to increase SIRT1 activity and circadian expression of Per2 and DDRR genes after exposure to NMU. Exposure of COP rats to NMU had the opposite effect, enhancing SIRT1 activity, increasing circadian expression of Per2 and DDRR genes. Significantly, SIRT1 activity and circadian expression of Per2 and DDRR genes in NMU-treated F344 rats on a chemopreventive regimen of MSC approximated those in NMU-treated COP rats. These results indicated that COP rats have an increased capacity to maintain NAD+-dependent SIRT1 activity under genotoxic stress. This contention was supported by increased stability of the period and phase of circadian locomotor activity in COP vs F344 rats exposed to changing light conditions. The increased sensitivity and rapid response of COP to changing light were correlated with the enhanced circadian response of this strain to carcinogen. Disturbance of circadian rhythm by jet lag also disrupted circadian expression of Per2 and DDRR genes, and accelerated mammary tumorigenesis in rodent models. These results suggested that uncoupling of DDRR responses from circadian control by environmental stresses and endogenous factors increases susceptibility to mammary carcinogenesis, possibly by inducing a promutagenic state.
Collapse
Affiliation(s)
- Mingzhu Fang
- School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,NIEHS Center for Environmental Exposures and Disease, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pamela A Ohman Strickland
- School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,NIEHS Center for Environmental Exposures and Disease, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hwan-Goo Kang
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Helmut Zarbl
- School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,NIEHS Center for Environmental Exposures and Disease, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
17
|
He Q, Tian L, Jiang H, Zhang J, Li Q, Sun Y, Zhao J, Li H, Liu M. Identification of laryngeal cancer prognostic biomarkers using an inflammatory gene-related, competitive endogenous RNA network. Oncotarget 2018; 8:9525-9534. [PMID: 27902487 PMCID: PMC5354750 DOI: 10.18632/oncotarget.13627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022] Open
Abstract
Competitive endogenous RNAs (ceRNAs) act as molecular sponges for microRNAs (miRNAs), and are associated with tumorigenesis in various cancers, including laryngeal cancer (LC). In this work, we constructed an LC-specific inflammatory gene-related ceRNA network (IceNet). In IceNet, ceRNAs targeting inflammation-related genes tended to be network hubs. Additionally, the betweenness centralities of these hub ceRNAs were higher than those of the inflammation-related genes themselves, indicating that the hub ceRNAs in this study played critical roles in communication between IceNet molecules. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that IceNet molecules are associated with multiple cancer-related functions and signaling pathways. Using cFinder software and survival analyses, we identified a potential prognostic module within IceNet that contains 18 mRNAs and a long non-coding RNA (lncRNA), and we effectively stratified patients into high- and low-risk subgroups with different survival outcomes, independent of patient age and tumor grade. This 18-mRNA and one-lncRNA module provides a novel mechanism for potentially improving LC patient prognostic predictions. Applying the module clinically to differentiate high- and low-risk patients could inform therapeutic decision making and ultimately improve patient outcomes. In addition, these results demonstrate the potential importance of IceNet hub ceRNAs in LC development and progression.
Collapse
Affiliation(s)
- Qun He
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hao Jiang
- The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jiarui Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiang Li
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiannan Zhao
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huijun Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Abstract
Self-sustained and synchronized to environmental stimuli, circadian clocks are under genetic and epigenetic regulation. Recent findings have greatly increased our understanding of epigenetic plasticity governed by circadian clock. Thus, the link between circadian clock and epigenetic machinery is reciprocal. Circadian clock can affect epigenetic features including genomic DNA methylation, noncoding RNA, mainly miRNA expression, and histone modifications resulted in their 24-h rhythms. Concomitantly, these epigenetic events can directly modulate cyclic system of transcription and translation of core circadian genes and indirectly clock output genes. Significant findings interlocking circadian clock, epigenetics, and cancer have been revealed, particularly in breast, colorectal, and blood cancers. Aberrant methylation of circadian gene promoter regions and miRNA expression affected circadian gene expression, together with 24-h expression oscillation pace have been frequently observed.
Collapse
|
19
|
Nirvani M, Khuu C, Utheim TP, Sand LP, Sehic A. Circadian clock and oral cancer. Mol Clin Oncol 2017; 8:219-226. [PMID: 29435282 PMCID: PMC5774470 DOI: 10.3892/mco.2017.1518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
The circadian clock is comprised of a master component situated in the hypothalamic suprachiasmatic nucleus and subordinate clock genes in almost every cell of the body. The circadian clock genes and their encoded proteins govern the organism to follow the natural signals of time, and adapt to external changes in the environment. The majority of physiological processes in mammals exhibit variable circadian rhythms, which are generated and coordinated by an oscillation in the expression of the clock genes. A number of studies have reported that alteration in the expression level of clock genes is correlated with several pathological conditions, including cancer. However, little is known about the role of clock genes in homeostasis of the oral epithelium and their disturbances in oral carcinogenesis. The present review summarizes the current state of knowledge of the implications of clock genes in oral cancer. It has been demonstrated that the development of oral squamous cell carcinoma undergoes circadian oscillation in relation to tumor volume and proliferation rate. The circadian clock gene period (PER)1 has been associated with oral cancer pathogenesis and it is suggested that changes in the expression of PER1 may exhibit an important role in the development, invasion, and metastasis of oral squamous cell carcinoma. However, its role remains elusive and there is a need for further research in order to understand the underlying mechanisms of the clock genes in oral cancer pathogenesis.
Collapse
Affiliation(s)
- Minou Nirvani
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| | - Cuong Khuu
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| | - Lars Peter Sand
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
20
|
Bukowska-Damska A, Reszka E, Kaluzny P, Wieczorek E, Przybek M, Zienolddiny S, Peplonska B. Sleep quality and methylation status of core circadian rhythm genes among nurses and midwives. Chronobiol Int 2017; 34:1211-1223. [PMID: 29106308 DOI: 10.1080/07420528.2017.1358176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ABSTARCT Poor sleep quality or sleep restriction is associated with sleepiness and concentration problems. Moreover, chronic sleep restriction may affect metabolism, hormone secretion patterns and inflammatory responses. Limited recent reports suggest a potential link between sleep deprivation and epigenetic effects such as changes in DNA methylation profiles. The aim of the present study was to assess the potential association between poor sleep quality or sleep duration and the levels of 5-methylcytosine in the promoter regions of PER1, PER2, PER3, BMAL1, CLOCK, CRY1 CRY2 and NPAS2 genes, taking into account rotating night work and chronotype as potential confounders or modifiers. A cross-sectional study was conducted on 710 nurses and midwives (347 working on rotating nights and 363 working only during the day) aged 40-60 years. Data from in-person interviews about sleep quality, chronotype and potential confounders were used. Sleep quality and chronotype were assessed using Pittsburgh Sleep Quality Questionnaire (PSQI) and Morningness-Eveningness Questionnaire (MEQ), respectively. Morning blood samples were collected. The methylation status of the circadian rhythm genes was determined via quantitative methylation-specific real-time PCR assays (qMSP) reactions using DNA samples derived from leucocytes. The proportional odds regression model was fitted to quantify the relationship between methylation index (MI) as the dependent variable and sleep quality or sleep duration as the explanatory variable. Analyses were carried out for the total population as well as for subgroups of women stratified by the current system of work (rotating night shift/day work) and chronotype (morning type/intermediate type/evening type). A potential modifying effect of the system of work or the chronotype was examined using the likelihood ratio test. No significant findings were observed in the total study population. Subgroup analyses revealed two statistically significant associations between a shorter sleep duration and 1) methylation level in PER2 among day workers, especially those with the morning chronotype (OR = 2.31, 95%CI:1.24-4.33), and 2) methylation level in CRY2 among subjects with the intermediate chronotype, particularly among day workers (OR = 0.52, 95%CI:0.28-0.96). The study results demonstrated a positive association between average sleep duration of less than 6 hours and the methylation level of PER2 among morning chronotype subjects, and an inverse association for CRY2 among intermediate chronotype subjects, but only among day workers. Both the system of work and the chronotype turned out to be important confounders and modifiers in a number of analyses, making it necessary to consider them as potential covariates in future research on sleep deficiency outcomes. Further studies are warranted to explore this under-investigated topic.
Collapse
Affiliation(s)
- Agnieszka Bukowska-Damska
- a Department of Environmental Epidemiology , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Edyta Reszka
- b Department of Molecular Genetic and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Pawel Kaluzny
- a Department of Environmental Epidemiology , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Edyta Wieczorek
- b Department of Molecular Genetic and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Monika Przybek
- b Department of Molecular Genetic and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Shanbeh Zienolddiny
- c Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Beata Peplonska
- a Department of Environmental Epidemiology , Nofer Institute of Occupational Medicine , Lodz , Poland
| |
Collapse
|
21
|
Liu L, Shen H, Wang Y. CRY2 is suppressed by FOXM1 mediated promoter hypermethylation in breast cancer. Biochem Biophys Res Commun 2017; 490:44-50. [DOI: 10.1016/j.bbrc.2017.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/01/2017] [Indexed: 01/17/2023]
|
22
|
Jung SY, Sobel EM, Papp JC, Zhang ZF. Effect of genetic variants and traits related to glucose metabolism and their interaction with obesity on breast and colorectal cancer risk among postmenopausal women. BMC Cancer 2017; 17:290. [PMID: 28446149 PMCID: PMC5405540 DOI: 10.1186/s12885-017-3284-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Impaired glucose metabolism-related genetic variants and traits likely interact with obesity and related lifestyle factors, influencing postmenopausal breast and colorectal cancer (CRC), but their interconnected pathways are not fully understood. By stratifying via obesity and lifestyles, we partitioned the total effect of glucose metabolism genetic variants on cancer risk into two putative mechanisms: 1) indirect (risk-associated glucose metabolism genetic variants mediated by glucose metabolism traits) and 2) direct (risk-associated glucose metabolism genetic variants through pathways other than glucose metabolism traits) effects. METHOD Using 16 single-nucleotide polymorphisms (SNPs) associated with glucose metabolism and data from 5379 postmenopausal women in the Women's Health Initiative Harmonized and Imputed Genome-Wide Association Studies, we retrospectively assessed the indirect and direct effects of glucose metabolism-traits (fasting glucose, insulin, and homeostatic model assessment-insulin resistance [HOMA-IR]) using two quantitative tests. RESULTS Several SNPs were associated with breast cancer and CRC risk, and these SNP-cancer associations differed between non-obese and obese women. In both strata, the direct effect of cancer risk associated with the SNP accounted for the majority of the total effect for most SNPs, with roughly 10% of cancer risk due to the SNP that was from an indirect effect mediated by glucose metabolism traits. No apparent differences in the indirect (glucose metabolism-mediated) effects were seen between non-obese and obese women. It is notable that among obese women, 50% of cancer risk was mediated via glucose metabolism trait, owing to two SNPs: in breast cancer, in relation to GCKR through glucose, and in CRC, in relation to DGKB/TMEM195 through HOMA-IR. CONCLUSIONS Our findings suggest that glucose metabolism genetic variants interact with obesity, resulting in altered cancer risk through pathways other than those mediated by glucose metabolism traits.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California Los Angeles, 700 Tiverton Ave, 3-264 Factor Building, Los Angeles, CA, 90095, USA.
| | - Eric M Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeanette C Papp
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Fang M, Guo WR, Park Y, Kang HG, Zarbl H. Enhancement of NAD⁺-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells. Oncotarget 2016; 6:42879-91. [PMID: 26544624 PMCID: PMC4767478 DOI: 10.18632/oncotarget.6002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
We previously reported that dietary methylselenocysteine (MSC) inhibits N-methyl-N-nitrosourea (NMU)-induced mammary tumorigenesis by resetting circadian gene expression disrupted by the carcinogen at the early stage of tumorigenesis. To investigate the underlying mechanism, we developed a circadian reporter system comprised of human mammary epithelial cells with a luciferase reporter driven by the promoter of human PERIOD 2 (PER2), a core circadian gene. In this in vitro model, NMU disrupted cellular circadian rhythm in a pattern similar to that observed with SIRT1-specific inhibitors; in contrast, MSC restored the circadian rhythms disrupted by NMU and protected against SIRT1 inhibitors. Moreover, NMU inhibited intracellular NAD+/NADH ratio and reduced NAD+-dependent SIRT1 activity in a dose-dependent manner, while MSC restored NAD+/NADH and SIRT1 activity in the NMU-treated cells, indicating that the NAD+-SIRT1 pathway was targeted by NMU and MSC. In rat mammary tissue, a carcinogenic dose of NMU also disrupted NAD+/NADH oscillations and decreased SIRT1 activity; dietary MSC restored NAD+/NADH oscillations and increased SIRT1 activity in the mammary glands of NMU-treated rats. MSC-induced SIRT1 activity was correlated with decreased acetylation of BMAL1 and increased acetylation of histone 3 lysine 9 at the Per2 promoter E-Box in mammary tissue. Changes in SIRT1 activity were temporally correlated with loss or restoration of rhythmic Per2 mRNA expression in NMU-treated or MSC-rescued rat mammary glands, respectively. Together with our previous findings, these results suggest that enhancement of NAD+-dependent SIRT1 activity contributes to the chemopreventive efficacy of MSC by restoring epigenetic regulation of circadian gene expression at early stages of mammary tumorigenesis.
Collapse
Affiliation(s)
- Mingzhu Fang
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,NIEHS Center for Environmental Exposures and Disease, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Ren Guo
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Youngil Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Hwan-Goo Kang
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Helmut Zarbl
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,NIEHS Center for Environmental Exposures and Disease, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|