1
|
Li F, Xu J, Zhu Y. MiR-6839-5p inhibits cell proliferation, migration and invasion; a possible correlation with the suppressing VEGFA expression in human chondrosarcoma cells. Discov Oncol 2024; 15:175. [PMID: 38762695 PMCID: PMC11102412 DOI: 10.1007/s12672-024-01038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
MicroRNAs play an important role in the proliferation, invasion, and metastasis of malignancy. In previous studies (detailed in our previous paper), the expression of miR-6839-5p was significantly increased in SW1353 cells after 125I seed 6 Gy irradiation, which indicated miR-6839-5p may play a tumor suppression function in chondrosarcoma cells. This study aimed to identify the effects of miR-6839-5p on the human chondrosarcoma cells, and investigate the potential target genes of miR-6839-5p. Firstly, chondrosarcoma cells (SW1353 and CAL78) were transfected with hsa-miR-6839-5p specific mimic. Secondly, Cell viability assay (MTT assay), Colony formation assay, Wound healing assay, Transwell assay, TUNEL staining and Western blotting experiments were performed, and the results proved miR-6839-5p can inhibit chondrosarcoma cells proliferation, migration and invasion. Meanwhile, miR-6839-5p significantly down-regulated apoptosis facilitator Bcl-2 expression, and promoted apoptosis of chondrosarcoma cells. It is reasonable to speculate miR-6839-5p might downregulate Bcl-2 expression to induce apoptosis in SW1353 human chondrosarcoma cells. Lastly, RNA extraction and bioinformatic analysis was performed on SW1353 cells transfected with hsa-miR-6839-5p specific mimic to investigate the potential target genes of miR-6839-5p. A total of 253 differentially expressed mRNA genes (105 up-regulated genes and 148 down-regulated genes) were found, and 23 differentially expressed downregulated genes were identified. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to validate the results, which demonstrated the expression of BST2, VEGFA, FPR3 and PPARA was significantly downregulated by miR-6839-5p mimic. Furthermore, miR-6839-5p inhibitor can restore or partially restore the expression value of the above four genes. The analysis results of miRNA target gene prediction database indicated VEGFA was the most likely direct target gene of miR-6839-5p.
Collapse
Affiliation(s)
- Fusheng Li
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, 155 Nan Jing Bei Street, Shenyang, 110001, People's Republic of China
- Department of Orthopaedics Oncology, The People's Hospital of Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Jia Xu
- Department of Medical Microbiology, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, 155 Nan Jing Bei Street, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
2
|
The Biological Function of MicroRNAs in Bone Tumors. Int J Mol Sci 2022; 23:ijms23042348. [PMID: 35216464 PMCID: PMC8876091 DOI: 10.3390/ijms23042348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Micro ribonucleic acids (miRNAs) are small endogenous noncoding RNAs molecules that regulate gene expression post-transcriptionally. A single miRNA is able to target hundreds of specific messenger RNA (mRNAs) by binding to the 3′-untranslated regions. miRNAs regulate different biological processes such as cell proliferation, differentiation and apoptosis. Altered miRNA expression is certainly related to the development of the most common human diseases, including tumors. Osteosarcoma (OS), Ewing’s Sarcoma (ES), and Chondrosarcoma (CS) are the most common primary bone tumors which affect mainly children and adolescents. A significant dysregulation of miRNA expression, in particular of mir-34, mir-21, mir-106, mir-143, and miR-100, has been revealed in OS, ES and CS. In this context, miRNAs can act as either tumor suppressor genes or oncogenes, contributing to the initiation and progression of bone tumors. The in-depth study of these small molecules can thus help to better understand their biological functions in bone tumors. Therefore, this review aims to examine the potential role of miRNAs in bone tumors, especially OS, ES and CS, and to suggest their possible use as potential therapeutic targets for the treatment of bone tumors and as biomarkers for early diagnosis.
Collapse
|
3
|
Liu Z, Mi M, Zheng X, Zhang C, Zhu F, Liu T, Wu G, Zhang L. miR-30a/SOX4 Double Negative Feedback Loop is modulated by Disulfiram and regulates EMT and Stem Cell-like properties in Breast Cancer. J Cancer 2021; 12:5053-5065. [PMID: 34234874 PMCID: PMC8247377 DOI: 10.7150/jca.57752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Both epithelial-to-mesenchymal transition (EMT) and cancer stem cells play important roles in development and progression of breast cancer. MicroRNA (miR)-30 family members have been reported to be associated with the regulation of EMT and stem cell phenotypes, however, the underlying molecular mechanisms are not well understood. Methods: miR-30a stable transfectants of breast cancer cell lines were created using a lentiviral system. Bioinformatics analysis was performed to explore miR-30a target genes and SOX4 was selected and identified by dual luciferase reporter assay. The effects of miR-30a and target gene SOX4 on EMT and CSC phenotypes in breast cancer were explored in vitro and in vivo. Results: Overexpression of miR-30a in breast cancer cells inhibited EMT and CSC phenotypes by targeting SOX4. Luciferase reporter assay confirmed that miR-30a directly targeted 3'UTR of SOX4, and formed a double-negative feedback loop with SOX4. Functional experiments demonstrated that knockdown of SOX4 suppressed EMT and CSC phenotypes of breast cancer cells through TGF-β/SMAD pathway, which was consistent with the inhibitory effects by overexpression of miR-30a. Additionally, we found disulfiram can upregulate miR-30a expression, and high miR-30a expression was associated with a good prognosis in breast cancer patients through TCGA database. Conclusion: Our findings suggest a novel double-negative loop between miR-30a and SOX4 mediated regulation of EMT and CSC features in breast cancer through TGF-β/SMAD pathway, highlighting a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Zijian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Mi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijiao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara. Ferrara, Italy
| |
Collapse
|
5
|
Sullivan CW, Kazley JM, Murtaza H, Cooley M, Jones D, DiCaprio MR. Team Approach: Evaluation and Management of Low-Grade Cartilaginous Lesions. JBJS Rev 2021; 8:e0054. [PMID: 32105237 DOI: 10.2106/jbjs.rvw.19.00054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
» Assessment of chondral lesions begins with a clinical evaluation and radiographs.
» Longitudinal follow-up with serial radiographs is appropriate in cases without evidence of aggressive radiographic features.
» Concerning radiographic features include periosteal reaction, soft-tissue extension, cortical destruction, endosteal scalloping of greater than two-thirds of the native cortex, larger lesion size (≥5 cm), and location in the axial skeleton.
» Biomarkers such as IMP3, SOX4, microRNA, and periostin may be used as an adjunct in histologic assessment to help differentiate benign enchondroma from a low-grade chondrosarcoma.
» Advanced-imaging studies, such as computed tomography (CT), bone scans, magnetic resonance imaging (MRI), dynamic contrast-enhanced MRI, and fluorodeoxyglucose positron emission tomography (FDG-PET), may be considered for borderline cases.
» Aggressive or concerning radiographic features should prompt evaluation with advanced imaging or referral to an orthopaedic oncologist.
Collapse
Affiliation(s)
- Connor W Sullivan
- Division of Orthopaedic Surgery (C.W.S., J.M.K., H.M., and M.R.D.), Department of Radiology (M.C.), and Department of Pathology (D.J.), Albany Medical Center, Albany, New York
| | - Jillian M Kazley
- Division of Orthopaedic Surgery (C.W.S., J.M.K., H.M., and M.R.D.), Department of Radiology (M.C.), and Department of Pathology (D.J.), Albany Medical Center, Albany, New York
| | - Hamza Murtaza
- Division of Orthopaedic Surgery (C.W.S., J.M.K., H.M., and M.R.D.), Department of Radiology (M.C.), and Department of Pathology (D.J.), Albany Medical Center, Albany, New York
| | - Michael Cooley
- Division of Orthopaedic Surgery (C.W.S., J.M.K., H.M., and M.R.D.), Department of Radiology (M.C.), and Department of Pathology (D.J.), Albany Medical Center, Albany, New York
| | - David Jones
- Division of Orthopaedic Surgery (C.W.S., J.M.K., H.M., and M.R.D.), Department of Radiology (M.C.), and Department of Pathology (D.J.), Albany Medical Center, Albany, New York
| | - Matthew R DiCaprio
- Division of Orthopaedic Surgery (C.W.S., J.M.K., H.M., and M.R.D.), Department of Radiology (M.C.), and Department of Pathology (D.J.), Albany Medical Center, Albany, New York
| |
Collapse
|
6
|
de Nigris F, Ruosi C, Napoli C. Clinical efficiency of epigenetic drugs therapy in bone malignancies. Bone 2021; 143:115605. [PMID: 32829036 DOI: 10.1016/j.bone.2020.115605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
A great interest in the scientific community is focused on the improvement of the cure rate in patients with bone malignancies that have a poor response to the first line of therapies. Novel treatments currently include epigenetic compounds or molecules targeting epigenetic-sensitive pathways. Here, we offer an exhaustive review of such agents in these clinical settings. Carefully designed preclinical studies selected several epigenetic drugs, including inhibitors of DNA methyltransferase (DNMTIs), such as Decitabine, histone deacetylase classes I-II (HDACIs), as Entinostat, Belinostat, lysine-specific histone demethylase (LSD1), as INCB059872 or FT-2102 (Olutasidenib), inhibitors of isocitrate dehydrogenases, and enhancer of zeste homolog 2 (EZH2), such as EPZ6438 (Tazemetostat) To enhance the therapeutic effect, the prevalent approach in phase II trial is the association of these epigenetic drug inhibitors, with targeted therapy or immune checkpoint blockade. Optimization of drug dosing and regimens of Phase II trials may improve the clinical efficiency of such novel therapeutic approaches against these devastating cancers.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Carlo Ruosi
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; IRCCS SDN, 80134 Naples, IT, Italy
| |
Collapse
|
7
|
Bhat SP, Joshi D, Srinivas T, J Rajendra VK, Shetty SM, Kumar AH. Secondary Peripheral Chondrosarcoma of the Scapula. Indian J Surg Oncol 2020; 11:257-261. [PMID: 33364713 DOI: 10.1007/s13193-020-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Shubha P Bhat
- Department of Pathology, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Divya Joshi
- Department of Pathology, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Teerthanath Srinivas
- Department of Pathology, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Vinay Kumar J Rajendra
- Department of Pathology, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Siddharth M Shetty
- Department of Pathology, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Aditya H Kumar
- Department of Pathology, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
8
|
Kim DH, Lee HS, Mun YH, Koh S, Park JS, Lee SM, Kang NW, Lee MY, Cho CW, Kim DD, Lee JY. An overview of chondrosarcoma with a focus on nanoscale therapeutics. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00492-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Pan Z, Wu C, Li Y, Li H, An Y, Wang G, Dai J, Wang Q. RETRACTED: LncRNA DANCR silence inhibits SOX5-medicated progression and autophagy in osteosarcoma via regulating miR-216a-5p. Biomed Pharmacother 2020; 122:109707. [PMID: 31918278 DOI: 10.1016/j.biopha.2019.109707] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/10/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors and Editor-in-Chief. The authors of this article have informed the editors that the human anti-LC3 antibody used in this work recognized multiple antigens in murine tissues, leading them to believe that the antibody is contaminated. This possible contamination further leads them to determine that the data generated using these antibodies, and any conclusions based on that data, cannot be considered accurate. Furthermore, the authors also report that subsequent work has revealed that the DANCR/miR-216a-5p axis plays a role in the regulation of beta-oxidation and downstream non-programmed cell death and homeostasis. They therefore have requested to retract this article as unreliable. The authors have not provided the relevant raw data for the editors' review, or the subsequent reported role of DANCR in beta-oxidation. Therefore, given the authors' loss of confidence in these findings, the Editor-in-Chief supports the decision to retract the article.
Collapse
Affiliation(s)
- Zhengxia Pan
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chun Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yonggang Li
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hongbo Li
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yong An
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Gang Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jiangtao Dai
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Quan Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Chicón-Bosch M, Tirado OM. Exosomes in Bone Sarcomas: Key Players in Metastasis. Cells 2020; 9:cells9010241. [PMID: 31963599 PMCID: PMC7016778 DOI: 10.3390/cells9010241] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Bone sarcomas are rare cancers which often present with metastatic disease and are still associated with poor survival rates. Studies in the last decade have identified that exosomes, a type of extracellular vesicle released by cells, play an important role in tumour progression and dissemination. Through the transfer of their cargo (RNAs, proteins, and lipids) across cells, they are involved in cellular cross-talk and can induce changes in cellular behaviour. Exosomes have been shown to be important in metastasis organotropism, induction of angiogenesis and vascular permeability, the education of cells towards a pro-metastatic phenotype or the interaction between stromal and tumour cells. Due to the importance exosomes have in disease progression and the high incidence of metastasis in bone sarcomas, recent studies have evaluated the implications of these extracellular vesicles in bone sarcomas. In this review, we discuss the studies that evaluate the role of exosomes in osteosarcoma, Ewing sarcoma, and preliminary data on chondrosarcoma.
Collapse
Affiliation(s)
- Mariona Chicón-Bosch
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| | - Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- CIBERONC, Carlos III Institute of Health (ISCIII), 28029 Madrid, Spain
- Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| |
Collapse
|
11
|
Camici M, Garcia-Gil M, Pesi R, Allegrini S, Tozzi MG. Purine-Metabolising Enzymes and Apoptosis in Cancer. Cancers (Basel) 2019; 11:cancers11091354. [PMID: 31547393 PMCID: PMC6769685 DOI: 10.3390/cancers11091354] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
The enzymes of both de novo and salvage pathways for purine nucleotide synthesis are regulated to meet the demand of nucleic acid precursors during proliferation. Among them, the salvage pathway enzymes seem to play the key role in replenishing the purine pool in dividing and tumour cells that require a greater amount of nucleotides. An imbalance in the purine pools is fundamental not only for preventing cell proliferation, but also, in many cases, to promote apoptosis. It is known that tumour cells harbour several mutations that might lead to defective apoptosis-inducing pathways, and this is probably at the basis of the initial expansion of the population of neoplastic cells. Therefore, knowledge of the molecular mechanisms that lead to apoptosis of tumoural cells is key to predicting the possible success of a drug treatment and planning more effective and focused therapies. In this review, we describe how the modulation of enzymes involved in purine metabolism in tumour cells may affect the apoptotic programme. The enzymes discussed are: ectosolic and cytosolic 5'-nucleotidases, purine nucleoside phosphorylase, adenosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, and inosine-5'-monophosphate dehydrogenase, as well as recently described enzymes particularly expressed in tumour cells, such as deoxynucleoside triphosphate triphosphohydrolase and 7,8-dihydro-8-oxoguanine triphosphatase.
Collapse
Affiliation(s)
- Marcella Camici
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy.
| | - Mercedes Garcia-Gil
- Dipartimento di Biologia, Unità di Fisiologia Generale, Via S. Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Simone Allegrini
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Maria Grazia Tozzi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
12
|
Berro J, Abdul Halim N, Khaled C, Assi HI. Malignant melanoma with metaplastic cartilaginous transdifferentiation: A case report. J Cutan Pathol 2019; 46:935-941. [DOI: 10.1111/cup.13539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Juliett Berro
- Department of Internal MedicineNaef K. Basile Cancer Institute, American University of Beirut Medical Center Beirut Lebanon
| | - Nour Abdul Halim
- Department of Internal MedicineNaef K. Basile Cancer Institute, American University of Beirut Medical Center Beirut Lebanon
| | - Chirine Khaled
- Department of PathologyAmerican University of Beirut Medical Center Beirut Lebanon
| | - Hazem I. Assi
- Department of Internal MedicineNaef K. Basile Cancer Institute, American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
13
|
SOX4: Epigenetic regulation and role in tumorigenesis. Semin Cancer Biol 2019; 67:91-104. [PMID: 31271889 DOI: 10.1016/j.semcancer.2019.06.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Sex-determining region Y-related (SRY) high-mobility group box 4 (SOX4) is a member of the group C subfamily of SOX transcription factors and promotes tumorigenesis by endowing cancer cells with survival, migratory, and invasive capacities. Emerging evidence has highlighted an unequivocal role for this transcription factor in mediating various signaling pathways involved in tumorigenesis, epithelial-to-mesenchymal transition (EMT), and tumor progression. During the last decade, numerous studies have highlighted the epigenetic interplay between SOX4-targeting microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and SOX4 and the subsequent modulation of tumorigenesis, invasion and metastasis. In this review, we summarize the current state of knowledge about the role of SOX4 in cancer development and progression, the epigenetic regulation of SOX4, and the potential utilization of SOX4 as a diagnostic and prognostic biomarker and its depletion as a therapeutic target.
Collapse
|
14
|
Abstract
Chondrosarcomas constitute a heterogeneous group of primary bone cancers characterized by hyaline cartilaginous neoplastic tissue. They are the second most common primary bone malignancy. The vast majority of chondrosarcomas are conventional chondrosarcomas, and most conventional chondrosarcomas are low- to intermediate-grade tumors (grade 1 or 2) which have indolent clinical behavior and low metastatic potential. Recurrence augurs a poor prognosis, as conventional chondrosarcomas are both radiation and chemotherapy resistant. Recent discoveries in the biology, genetics, and epigenetics of conventional chondrosarcomas have significantly advanced our understanding of the pathobiology of these tumors and offer insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Warren A Chow
- Department of Medical Oncology & Therapeutics Research, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
15
|
|
16
|
Nazeri E, Gouran Savadkoohi M, Majidzadeh-A K, Esmaeili R. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets. Crit Rev Oncol Hematol 2018; 131:102-109. [PMID: 30293700 DOI: 10.1016/j.critrevonc.2018.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Sarcomas are known as a heterogeneous class of cancers arisen in the connective tissues and demonstrated various histological subtypes including both soft tissue and bone origin. Chondrosarcoma is one of the main types of bone sarcoma that shows a considerable deficiency in response to chemotherapy and radiotherapy. While conventional treatment based on surgery, chemo-and radiotherapy are used in this tumor, high rate of death especially among children and adolescents are reported. Due to high resistance to current conventional therapies in chondrosarcoma, there is an urgent requirement to recognize factors causing resistance and discover new strategies for optimal treatment. In the past decade, dysregulation of genes associated with tumor development and therapy resistance has been studied to find potential therapeutic targets to overcome resistance. In this review, clinical aspects of chondrosarcoma are summarized. Moreover, it gives a summary of gene dysregulation, mutation, histone modifications and non-coding RNAs associated with tumor development and therapeutic response modulation. Finally, the probable role of tumor microenvironment in chondrosarcoma drug resistance and targeted therapies as a promising molecular therapeutic approach are summarized.
Collapse
Affiliation(s)
- Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | | | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
17
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of
$$\varvec{Sox}$$
Sox
4 in Misgurnus anguillicaudatus. J Genet 2018. [DOI: 10.1007/s12041-018-0972-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
MiR-30a: A Novel Biomarker and Potential Therapeutic Target for Cancer. JOURNAL OF ONCOLOGY 2018; 2018:5167829. [PMID: 30158978 PMCID: PMC6106977 DOI: 10.1155/2018/5167829] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are small, highly conserved noncoding RNAs molecules, consisting of 18–25 nucleotides that regulate gene expression by binding to complementary binding sites within the 3′untranslated region (3′UTR) of target mRNAs. MiRNAs have been involved in regulating gene expression and diverse physiological and pathological processes. Several studies have reported that miR-30a, situated on chromosome 6q.13, is produced by an intronic transcriptional unit. Moreover, miR-30a has demonstrated its role in biological processes, including inhibiting proliferation and metastasis in many tumors, autophagy in chronic myelogenous leukemia, and regulating TGF-b1-induced epithelial-mesenchymal transition. However, based on the pathogenetic relationship between miR-30a and cancer in tumorigenesis, we believe that miR-30a may serve as tumor promising biomarker. Moreover, it would offer a therapeutic target for the treatment of cancer.
Collapse
|
19
|
Bellavia D, Raimondi L, Costa V, De Luca A, Carina V, Maglio M, Fini M, Alessandro R, Giavaresi G. Engineered exosomes: A new promise for the management of musculoskeletal diseases. Biochim Biophys Acta Gen Subj 2018; 1862:1893-1901. [PMID: 29885361 DOI: 10.1016/j.bbagen.2018.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine. SCOPE OF REVIEW The aim of this review is to provide information on the state-of-the-art and possible applications of engineered exosomes, both for cargo and specific cell-targeting, in different pathologies related to the musculoskeletal system. MAJOR CONCLUSIONS The use of exosomes as therapeutic agents is rapidly evolving, different studies explore drug delivery with exosomes using different molecules, showing an enormous potential in various research fields such as oncology and regenerative medicine. GENERAL SIGNIFICANCE However, despite the significant progress made by the different studies carried out, currently, the use of exosomes is not a therapeutic reality for the considerable difficulties to overcome.
Collapse
Affiliation(s)
- D Bellavia
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy.
| | - L Raimondi
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - A De Luca
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - M Maglio
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - M Fini
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - R Alessandro
- Department of Biopathology and Medical Biotechnologies, Section of Biology and Genetics, University of Palermo, Palermo 90133, Italy; Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - G Giavaresi
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
20
|
Jeong W, Kim HJ. Biomarkers of chondrosarcoma. J Clin Pathol 2018; 71:579-583. [PMID: 29593061 PMCID: PMC6204964 DOI: 10.1136/jclinpath-2018-205071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Clinical outcome prediction is major concern to patients with cancer. Various molecular markers in various carcinomas have been identified in the past few decades. However, accurate predictors in chondrosarcoma have not been developed, even though chondrosarcoma is the second most common primary bone tumour. Chondrosarcoma is the cartilage-forming malignancy and shows a wide spectrum of clinicopathological behaviours. The majority of chondrosarcoma grows slowly and rarely metastasises, and adequate surgery leads to a good prognosis. However, wide surgical excision is acquired in high-grade chondrosarcoma, because this tumour is highly resistant to chemotherapy and radiotherapy. To decide best therapy, accurate diagnostic markers are also necessary in chondrosarcoma. It is reported that angiogenesis and lymphangiogenesis increase by chondrosarcoma staging, and they are promoted by leptin and adiponectin. Several microRNAs to regulate vascular endothelial growth factor (VEGF)-A and VEGF-C are also reported. Alpha-methylacyl-CoA racemase and periostin are proposed as new biomarkers for differential diagnosis of enchondroma and chondrosarcoma. This review summarises that chondrosarcoma diagnostic markers are currently reported.
Collapse
Affiliation(s)
- Wonju Jeong
- Department of Orthopedic Surgery, Daegu Top Hospital, Daegu, The Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, The Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, The Republic of Korea
| |
Collapse
|
21
|
Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP. Biosci Rep 2018; 38:BSR20171027. [PMID: 29026005 PMCID: PMC5968186 DOI: 10.1042/bsr20171027] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/30/2022] Open
Abstract
The study aimed at investigating the effects of miR-30a-5p on the biological functions of oral cancer cells and figuring out the potential mechanism. We first verified the low expression of miR-30a-5p and high expression of FAP (Homo sapiens fibroblast activation protein α) in oral cancerous tissues and their negative correlation. Then, the target relationship between miR-30a-5p and FAP was validated by dual luciferase reporter assay and biotin-coupled miRNA pulldown assay. After transfection in Tca-8113 cells and SCC-15 cells, MTT, colony formation, Transwell, and wound healing assays were performed to investigate how miR-30a-5p and FAP adjusted propagation, invasiveness, and migration, respectively. Mounting evidence supported that miR-30a-5p directly targetted FAP and suppressed its expression in oral cavity cancer cells (OSCCs). By suppressing FAP expression, miR-30a-5p significantly inhibited cell propagation, migration, and invasion. Therefore, miR-30a-5p might be a new therapeutic target for oral cancer treatment.
Collapse
|
22
|
Boehme KA, Schleicher SB, Traub F, Rolauffs B. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance. Int J Mol Sci 2018; 19:ijms19010311. [PMID: 29361725 PMCID: PMC5796255 DOI: 10.3390/ijms19010311] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC) in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA) at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC).
Collapse
Affiliation(s)
- Karen A Boehme
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| | - Sabine B Schleicher
- Department of Hematology and Oncology, Eberhard Karls University Tuebingen, Children's Hospital, 72076 Tuebingen, Germany.
| | - Frank Traub
- Department of Orthopedic Surgery, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| |
Collapse
|
23
|
Fu XT, Shi YH, Zhou J, Peng YF, Liu WR, Shi GM, Gao Q, Wang XY, Song K, Fan J, Ding ZB. MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer Lett 2017; 412:108-117. [PMID: 29061507 DOI: 10.1016/j.canlet.2017.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
MiRNA-30a (miR-30a) was previously reported as one of metastatic hepatocellular carcinoma (HCC)-related microRNAs. However, the function of miR-30a on enhancing our biological understanding of HCC metastasis is not clear. This study demonstrated that miR-30a was significantly down-regulated in HCC tissues and cell lines, and was associated with vascular invasion, metastasis potential and recurrent disease in HCC. Functional studies confirmed that miR-30a could inhibit the metastasis of HCC in a well-established nude mouse model of lung metastasis. Moreover, miR-30a was proved to prevent anoikis inhibition of HCC cells in vivo and in vitro. Mechanically, autophagy related protein Beclin 1 and Atg5 were direct downstream targets of miR-30a, and mediated autophagy activity influence of miR-30a in HCC. Taken together, downregulated miR-30a in metastatic HCC mediates Beclin 1 and Atg5-dependent autophagy, which confers anoikis resistance in HCC cells. The molecular basis of autophagy action during this process partly contributes to the HCC metastasis, suggesting that targeting autophagy via miR-30a may have therapeutic implications for the prevention of HCC recurrence/metastasis.
Collapse
Affiliation(s)
- Xiu-Tao Fu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yuan-Fei Peng
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Wei-Ren Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Kang Song
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhen-Bin Ding
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Overexpression of SOX4 correlates with poor prognosis of acute myeloid leukemia and is leukemogenic in zebrafish. Blood Cancer J 2017; 7:e593. [PMID: 28841206 PMCID: PMC5596385 DOI: 10.1038/bcj.2017.74] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
The SOX4 transcription factor is a key regulator of embryonic development, cell-fate decision, cellular differentiation and oncogenesis. Abnormal expression of SOX4 is related to malignant tumor transformation and cancer metastasis. However, no reports are available regarding the clinical significance of SOX4 in acute myeloid leukemia (AML) and the role of SOX4 in leukemogenesis. In the current study, we found that AML patients with low bone marrow (BM) SOX4 expression had higher remission rates and longer overall survival than those with high SOX4 expression, regardless of age, white blood cell count at diagnosis, karyotype profile and NPM1/FLT3-ITD status. To elucidate the role of SOX4 in leukemogenesis, we generated a transgenic zebrafish model that overexpressed human SOX4 in the myeloid lineage Tg(spi1-SOX4-EGFP). These transgenic zebrafish showed, at 5 months of age, increased myelopoiesis with dedifferentiation in kidney marrow. At 9 months of age, their kidney structure was significantly effaced and distorted by increased infiltration of myeloid progenitor cells. These results suggest that SOX4 is not only an independent prognostic factor of AML, but also an important molecular factor in leukemogenesis.
Collapse
|
25
|
Lourenço AR, Coffer PJ. SOX4: Joining the Master Regulators of Epithelial-to-Mesenchymal Transition? Trends Cancer 2017; 3:571-582. [PMID: 28780934 DOI: 10.1016/j.trecan.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/03/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important developmental program exploited by cancer cells to gain mesenchymal features. Transcription factors globally regulating processes during EMT are often referred as 'master regulators' of EMT, and include members of the Snail and ZEB transcription factor families. The SRY-related HMG box (SOX) 4 transcription factor can promote tumorigenesis by endowing cells with migratory and invasive properties, stemness, and resistance to apoptosis, thereby regulating key aspects of the EMT program. We propose here that SOX4 should also be considered as a master regulator of EMT, and we review the molecular mechanisms underlying its function.
Collapse
Affiliation(s)
- Ana Rita Lourenço
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of Sox4 in Paramisgurnus dabryanus. Gene Expr Patterns 2017. [PMID: 28629960 DOI: 10.1016/j.gep.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sox4 belonged to the SoxC subfamily of the Sox family, which play important roles in the development of the vertebrate gonad and nervous system. A Sox4 homologue was cloned from brain of Paramisgurnus dabryanus by using homologous cloning and rapid amplification of cDNA ends (RACE), designated as PdSox4. The full-length cDNA was 2163bp, containing the 759bp 5'-untranslated region, 267bp 3'-untranslated region and encoding a putative protein of 378 amino acids with a characteristic high mobility group box (HMG-box) DNA-binding domain of 79 amino acids with the specific motif (RPMNAFMVW). Alignment and phylogenetic analyses indicated that PdSox4 shares highly identical sequence with Sox4 homologues from different species. The signal peptide analysis predicted that PdSox4 is a non-secretory protein. The hydropathy profile of PdSox4 protein revealed that this protein is hydrophilic in nature. The expression profiles of PdSox4 in different developmental stages and various adult tissues of sexs were analyzed by quantitative real-time RT-PCR (qRT-PCR) and In situ hybridization (ISH). The results showed that PdSox4 was ubiquitously expressed during embryogenesis and various adult tissues, especially in central nervous system. Tissue distribution analyses revealed that PdSox4 was expression in developing germ cells. Taken together, these preliminary findings suggested that PdSox4 is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, neurogenesis and gonad development.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Linxia Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaopei Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
27
|
Xie M, Qin H, Luo Q, Huang Q, He X, Yang Z, Lan P, Lian L. MicroRNA-30a regulates cell proliferation and tumor growth of colorectal cancer by targeting CD73. BMC Cancer 2017; 17:305. [PMID: 28464916 PMCID: PMC5414330 DOI: 10.1186/s12885-017-3291-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs are non-coding RNAs which regulate a variety of cellular functions in the development of tumors. Among the numerous microRNAs, microRNA-30a (miR-30a) is thought to play an important role in the processes of various human tumors. In this study, we aimed to explore the role of miR-30a in the process of colorectal cancer (CRC). Methods The quantitative real-time PCR and western blot analysis were used to detect the expressions of miR-30a and CD73 in CRC cell lines and clinical tissues. The luciferase reporter assay was conducted to validate the association between miR-30a and CD73. The CCK-8, terminal deoxynucleotidyl transferase dUTP -biotin nick end labeling (TUNEL) assays and cell cycle flow cytometry were carried out to verify the biological functions of miR-30a in vitro. The nude mouse tumorigenicity experiment was used to clarify the biological role of miR-30a in vivo. Results The expression of miR-30a was significantly reduced in tumor cells and tissues of CRC. The proliferation ability of CRC cells was suppressed and the apoptosis of cells was promoted when miR-30a is over-regulated, however, the biological effects would be inverse since the miR-30a is down-regulated. CD73 is thought to be a target binding gene of miR-30a because miR-30a can bind directly to the 3′-UTR of CD73 mRNA, subsequently reducing its expression. The proliferation suppression of the CRC cells mediated by miR-30a could be rescued after up-regulating the expression of CD73. Conclusions MiR-30a plays an important role on regulating the cell proliferation and apoptosis, thus affecting the growth of the tumor in CRC. And it may participate in the disease process of CRC by regulating the expression of CD73. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3291-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, People's Republic of China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China.,Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, People's Republic of China
| | - Huabo Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, People's Republic of China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Qianxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, People's Republic of China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Qunsheng Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, People's Republic of China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, People's Republic of China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, People's Republic of China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China.
| | - Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, People's Republic of China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China.
| |
Collapse
|
28
|
Genetic aberrations and molecular biology of skull base chordoma and chondrosarcoma. Brain Tumor Pathol 2017; 34:78-90. [PMID: 28432450 DOI: 10.1007/s10014-017-0283-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Chordomas and chondrosarcomas are two major malignant bone neoplasms located at the skull base. These tumors are rarely metastatic, but can be locally invasive and resistant to conventional chemotherapies and radiotherapies. Accordingly, therapeutic approaches for the treatment of these tumors can be difficult. Additionally, their location at the skull base makes them problematic. Although accurate diagnosis of these tumors is important because of their distinct prognoses, distinguishing between these tumor types is difficult due to overlapping radiological and histopathological findings. However, recent accumulation of molecular and genetic studies, including extracranial location analysis, has provided us clues for accurate diagnosis. In this report, we review the genetic aberrations and molecular biology of these two tumor types. Among the abundant genetic features of these tumors, brachyury immunohistochemistry and direct sequencing of IDH1/2 are simple and useful techniques that can be used to distinguish between these tumors. Although it is still unclear why these tumors, which have such distinct genetic backgrounds, show similar histopathological findings, comparison of their genetic backgrounds could provide essential information.
Collapse
|
29
|
Yang SJ, Yang SY, Wang DD, Chen X, Shen HY, Zhang XH, Zhong SL, Tang JH, Zhao JH. The miR-30 family: Versatile players in breast cancer. Tumour Biol 2017; 39:1010428317692204. [PMID: 28347244 DOI: 10.1177/1010428317692204] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microRNA family, miR-30, plays diverse roles in regulating key aspects of neoplastic transformation, metastasis, and clinical outcomes in different types of tumors. Accumulating evidence proves that miR-30 family is pivotal in the breast cancer development by controlling critical signaling pathways and relevant oncogenes. Here, we review the roles of miR-30 family members in the tumorigenesis, metastasis, and drug resistance of breast cancer, and their application to predict the prognosis of breast cancer patients. We think miR-30 family members would be promising biomarkers for breast cancer and may bring a novel insight in molecular targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Su-Jin Yang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Su-Yu Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-Yu Shen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiao-Hui Zhang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
30
|
Palmini G, Marini F, Brandi ML. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma? Molecules 2017; 22:E417. [PMID: 28272374 PMCID: PMC6155266 DOI: 10.3390/molecules22030417] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
31
|
Pu F, Chen F, Shao Z. MicroRNAs as biomarkers in the diagnosis and treatment of chondrosarcoma. Tumour Biol 2016; 37:10.1007/s13277-016-5468-1. [PMID: 27730542 DOI: 10.1007/s13277-016-5468-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs are a group of small non-coding RNAs that play a complex role in post-transcriptional gene expression and can be used for diagnosis, prognosis, and targeted treatment. Despite advances in diagnosis and treatment of chondrosarcoma, its underpinning molecular mechanisms still remain elusive. Given the recent increasing knowledge base of micro RNA (miRNA) roles in neoplasia, both as oncogenes and tumor suppressor genes, this review will focus on discussing the available data on expression profiles and potential roles of miRNA in chondrosarcoma. Accumulating evidence suggests that microRNAs have the potential to be used in the future for clinical management of chondrosarcoma.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan, Hubei, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
32
|
|
33
|
Li J, Wang L, Liu Z, Zu C, Xing F, Yang P, Yang Y, Dang X, Wang K. MicroRNA-494 inhibits cell proliferation and invasion of chondrosarcoma cells in vivo and in vitro by directly targeting SOX9. Oncotarget 2016; 6:26216-29. [PMID: 26317788 PMCID: PMC4694896 DOI: 10.18632/oncotarget.4460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that dysregulation of miRNAs could contribute to tumor growth and metastasis of chondrosarcoma by infuencing cell proliferation and invasion. In the current study, we are interested to examine the role of miRNAs in the carcinogenesis and progression of chondrosarcoma. Here, using comparative miRNA profiling of tissues and cells of chondrosarcoma and cartilage, we identified miR-494 as a commonly downregulated miRNA in the tissues of patients with chondrosarcoma and chondrosarcoma cancer cell line, and upregulation of miR-494 could inhibit proliferation and invasion of chondrosarcoma cancer cells in vivo and in vitro. Moreover, our data demonstrated that SOX9, the essential regulator of the process of cartilage differentiation, was the direct target and functional mediator of miR-494 in chondrosarcoma cells. And downregulation of SOX9 could also inhibit migration and invasion of chondrosarcoma cells. In the last, we identified low expression of miR-494 was significantly correlated with poor overall survival and prognosis of chondrosarcoma patients. Thus, miR-494 may be a new common therapeutic target and prognosis biomarker for chondrosarcoma.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China.,Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Lijuan Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, P.R. China
| | - Zongzhi Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Chao Zu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, Guangdong Province, P.R. China
| | - Pei Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China
| | - Yongkang Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi Province, P.R. China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China
| | - Kunzheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China
| |
Collapse
|
34
|
Chen MM, O'Mara TA, Thompson DJ, Painter JN, Attia J, Black A, Brinton L, Chanock S, Chen C, Cheng TH, Cook LS, Crous-Bou M, Doherty J, Friedenreich CM, Garcia-Closas M, Gaudet MM, Gorman M, Haiman C, Hankinson SE, Hartge P, Henderson BE, Hodgson S, Holliday EG, Horn-Ross PL, Hunter DJ, Le Marchand L, Liang X, Lissowska J, Long J, Lu L, Magliocco AM, Martin L, McEvoy M, Olson SH, Orlow I, Pooler L, Prescott J, Rastogi R, Rebbeck TR, Risch H, Sacerdote C, Schumacher F, Wendy Setiawan V, Scott RJ, Sheng X, Shu XO, Turman C, Van Den Berg D, Wang Z, Weiss NS, Wentzensen N, Xia L, Xiang YB, Yang HP, Yu H, Zheng W, Pharoah PDP, Dunning AM, Tomlinson I, Easton DF, Kraft P, Spurdle AB, De Vivo I. GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer. Hum Mol Genet 2016; 25:2612-2620. [PMID: 27008869 PMCID: PMC5868213 DOI: 10.1093/hmg/ddw092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/20/2022] Open
Abstract
Endometrial cancer is the most common gynecological malignancy in the developed world. Although there is evidence of genetic predisposition to the disease, most of the genetic risk remains unexplained. We present the meta-analysis results of four genome-wide association studies (4907 cases and 11 945 controls total) in women of European ancestry. We describe one new locus reaching genome-wide significance (P < 5 × 10 -8) at 6p22.3 (rs1740828; P = 2.29 × 10 -8, OR = 1.20), providing evidence of an additional region of interest for genetic susceptibility to endometrial cancer.
Collapse
Affiliation(s)
- Maxine M Chen
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Deborah J Thompson
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jodie N Painter
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - John Attia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW 2305, Australia
- School of Medicine and Public Health, Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Louise Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chu Chen
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Timothy Ht Cheng
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Linda S Cook
- University of New Mexico, Albuquerque, NM 87131, USA
- Division of Cancer Care, Department of Population Health Research, Alberta Health Services, Calgary, AB, Canada
| | - Marta Crous-Bou
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Doherty
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03755, USA
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, AB, Canada
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mia M Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30329, USA
| | - Maggie Gorman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - Susan E Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst MA 01003, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Shirley Hodgson
- Department of Clinical Genetics, St George's, University of London, London SW17 0RE, UK
| | - Elizabeth G Holliday
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | | | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | | | - Xiaolin Liang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt - Ingram Cancer Center, Vanderbilt University Medical Center, Nashville TN 27232, USA
| | - Lingeng Lu
- Yale University School of Public Health, New Haven, CT 06510, USA
| | | | - Lynn Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Mark McEvoy
- School of Medicine and Public Health, Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Sara H Olson
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irene Orlow
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Loreall Pooler
- University of Southern California, Los Angeles, CA 90033, USA
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Radhai Rastogi
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy R Rebbeck
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Harvey Risch
- Yale University School of Public Health, New Haven, CT 06510, USA
| | - Carlotta Sacerdote
- Center for Cancer Prevention (CPO-Piemonte), Turin, Italy
- Human Genetic Foundation (HuGeF), Turin, Italy
| | | | | | - Rodney J Scott
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW 2305, Australia
- Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Xin Sheng
- University of Southern California, Los Angeles, CA 90033, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt - Ingram Cancer Center, Vanderbilt University Medical Center, Nashville TN 27232, USA
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | | | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Noel S Weiss
- University of Washington, Seattle, WA 19024, USA
| | - Nicholas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lucy Xia
- University of Southern California, Los Angeles, CA 90033, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China and
| | - Hannah P Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Herbert Yu
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Wei Zheng
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt - Ingram Cancer Center, Vanderbilt University Medical Center, Nashville TN 27232, USA
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Ian Tomlinson
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA,
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Bao ZQ, Zhang CC, Xiao YZ, Zhou JS, Tao YS, Chai DM. Over-expression of Sox4 and β-catenin is associated with a less favorable prognosis of osteosarcoma. ACTA ACUST UNITED AC 2016; 36:193-199. [PMID: 27072961 DOI: 10.1007/s11596-016-1565-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/20/2015] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to examine the association of the expression of Sox4 and β-catenin with the prognosis of osteosarcoma. A total of 108 cases of conventional osteosarcoma were involved in this study and 28 cases of osteochondroma served as controls. The expression of Sox4 and β-catenin was detected by using immunohistochemical staining and Western blotting. The results showed that Sox4 and β-catenin were over-expressed in 67 (62.03%) and 62 (57.41%) of 108 osteosarcoma cases, while in only 3 (10.71%) and 5 (17.86%) of 28 controls, respectively (P<0.05 for all). The expression of Sox4 and β-catenin was associated with the distant metastasis, pathological grade and Enneking stage of patients with osteosarcoma (P<0.05 for all). The mean overall survival time and the 5-year-survival rate in osteosarcoma patients with Sox4 and β-catenin over-expressed were significantly reduced as compared with those in Sox4 and β-catenin low-expression group (P<0.05 for all). Cox multifactor regression analysis revealed that the distant metastasis, Enneking stage, and the expression of Sox4 and β-catenin were independent risk factors of patients with osteosarcoma (P<0.05 for all). The findings indicated that overexpression of Sox4 and β-catenin is associated with a poor prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Zheng-Qi Bao
- Department of Orthopaedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Chang-Chun Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Yu-Zhou Xiao
- Department of Orthopaedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Jian-Sheng Zhou
- Department of Orthopaedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Yi-Sheng Tao
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Da-Min Chai
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|