1
|
Gao C, Peng YN, Wang HZ, Fang SL, Zhang M, Zhao Q, Liu J. Inhibition of Heat Shock Protein 90 as a Novel Platform for the Treatment of Cancer. Curr Pharm Des 2020; 25:849-855. [PMID: 31244417 DOI: 10.2174/1381612825666190503145944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays an essential role in various physiological and pathological processes. It activates client proteins to participate in tumor progression. Blocking Hsp90 could enable effective antitumor effects in many tumor types, such as multiple myeloma and colon cancer. Recently, it has motivated an interest in Hsp90 inhibitors that bind to the N-terminal or C-terminal ATP pocket as antitumor drugs. We reviewed the data from experimental and clinical trials on Hsp90 inhibitors in the treatment of different malignancies to explore and summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Chang Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ya-Nan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi-Lin Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
2
|
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M, Zarghami N. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed Pharmacother 2018; 102:608-617. [PMID: 29602128 DOI: 10.1016/j.biopha.2018.03.102] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/08/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary preserved molecular chaperone which mediates many cellular processes such as cell transformation, proliferation, and survival in normal and stress conditions. Hsp90 plays an important role in folding, maturation, stabilization and activation of Hsp90 client proteins which all contribute to the development, and proliferation of cancer as well as other inflammatory diseases. Functional inhibition of Hsp90 can have a massive effect on various oncogenic and inflammatory pathways, and will result in the degradation of their client proteins. This turns it into an interesting target in the treatment of different malignancies. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) as a semi-synthetic derivative of geldanamycin, has several advantages over 17-Allylamino-17-demethoxygeldanamycin (17-AAG) such as higher water solubility, good bioavailability, reduced metabolism, and greater anti-tumour capability. 17-DMAG binds to the Hsp90, and inhibits its function which eventually results in the degradation of Hsp90 client proteins. Here, we reviewed the pre-clinical data and clinical trial data on 17-DMAG as a single agent, in combination with other agents and loaded on nanomaterials in various cancers and inflammatory diseases.
Collapse
Affiliation(s)
- Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arman Shahabi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Tu CC, Huang CY, Cheng WL, Hung CS, Chang YJ, Wei PL. Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment. Tumour Biol 2016; 37:9493-501. [PMID: 26790437 DOI: 10.1007/s13277-015-4751-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.
Collapse
Affiliation(s)
- Chao-Chiang Tu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, New Taipei Hospital, Taipei, Taiwan
| | - Chien-Yu Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Hung
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| |
Collapse
|
4
|
Farooqi AA, Li KT, Fayyaz S, Chang YT, Ismail M, Liaw CC, Yuan SSF, Tang JY, Chang HW. Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress. Tumour Biol 2015; 36:5743-52. [PMID: 26188905 PMCID: PMC4546701 DOI: 10.1007/s13277-015-3797-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan,
| | | | | | | | | | | | | | | | | |
Collapse
|