1
|
Kalkan BM, Baykal AT, Cicek E, Acilan C. Comprehensive proteomics analysis reveals novel Nek2-regulated pathways and therapeutic targets in cancer. Biochem Biophys Res Commun 2024; 734:150779. [PMID: 39368370 DOI: 10.1016/j.bbrc.2024.150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The mitotic kinase Nek2, often overexpressed in various cancers, plays a pivotal role in key cellular processes like the cell cycle, proliferation, and drug resistance. As a result, targeting Nek2 has become an appealing strategy for cancer therapy. To gain a comprehensive understanding of the cellular changes associated with Nek2 activity modulation, we performed a global proteomics analysis using LC-MS/MS. Through bioinformatics tools, we identified molecular pathways that are differentially regulated in cancer cells with Nek2 overexpression or depletion. Of the 1815 proteins identified, 358 exceeded the 20 % significance threshold. By integrating LC-MS/MS data with cancer patient datasets, we observed a strong correlation between Nek2 expression and the levels of KIF20B and RRM1. Silencing Nek2 led to a significant reduction in KIF20B and RRM1 protein levels, and potential phosphorylation sites for these proteins by Nek2 were identified. In summary, our data suggests that KIF20B and RRM1 are promising therapeutic targets, either independently or alongside Nek2 inhibitors, to improve clinical outcomes. Further analyses are necessary to fully understand Nek2's interactions with these proteins and their clinical relevance.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Enes Cicek
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Ceyda Acilan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey; Koç University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
2
|
The protective effect of resveratrol on diazinon‐induced oxidative stress and glucose hemostasis disorder in rats' liver. J Biochem Mol Toxicol 2022; 36:e23063. [DOI: 10.1002/jbt.23063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/11/2021] [Accepted: 03/23/2022] [Indexed: 01/31/2023]
|
3
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
4
|
Long MJC, Zhao Y, Aye Y. Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chem Biol 2020; 1:42-55. [PMID: 34458747 PMCID: PMC8341840 DOI: 10.1039/d0cb00041h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Transient associations between numerous organelles-e.g., the endoplasmic reticulum and the mitochondria-forge highly-coordinated, particular environments essential for cross-compartment information flow. Our perspective summarizes chemical-biology tools that have enabled identifying proteins present within these itinerant communities against the bulk proteome, even when a particular protein's presence is fleeting/substoichiometric. However, proteins resident at these ephemeral junctions also experience transitory changes to their interactomes, small-molecule signalomes, and, importantly, functions. Thus, a thorough census of sub-organellar communities necessitates functionally probing context-dependent signaling properties of individual protein-players. Our perspective accordingly further discusses how repurposing of existing tools could allow us to glean a functional understanding of protein-specific signaling activities altered as a result of organelles pulling together. Collectively, our perspective strives to usher new chemical-biology techniques that could, in turn, open doors to modulate functions of specific subproteomes/organellar junctions underlying the nuanced regulatory subsystem broadly termed as contactology.
Collapse
Affiliation(s)
| | - Yi Zhao
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering 1015 Lausanne Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering 1015 Lausanne Switzerland
| |
Collapse
|
5
|
Yu L, Wei M, Li F. Longitudinal Analysis of Gene Expression Changes During Cervical Carcinogenesis Reveals Potential Therapeutic Targets. Evol Bioinform Online 2020; 16:1176934320920574. [PMID: 32489245 PMCID: PMC7241206 DOI: 10.1177/1176934320920574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
Despite advances in the treatment of cervical cancer (CC), the prognosis of patients with CC remains to be improved. This study aimed to explore candidate gene targets for CC. CC datasets were downloaded from the Gene Expression Omnibus database. Genes with similar expression trends in varying steps of CC development were clustered using Short Time-series Expression Miner (STEM) software. Gene functions were then analyzed using the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Protein interactions among genes of interest were predicted, followed by drug-target genes and prognosis-associated genes. The expressions of the predicted genes were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Red and green profiles with upward and downward gene expressions, respectively, were screened using STEM software. Genes with increased expression were significantly enriched in DNA replication, cell-cycle-related biological processes, and the p53 signaling pathway. Based on the predicted results of the Drug-Gene Interaction database, 17 drug-gene interaction pairs, including 3 red profile genes (TOP2A, RRM2, and POLA1) and 16 drugs, were obtained. The Cancer Genome Atlas data analysis showed that high POLA1 expression was significantly correlated with prolonged survival, indicating that POLA1 is protective against CC. RT-qPCR and Western blotting showed that the expressions of TOP2A, RRM2, and POLA1 gradually increased in the multistep process of CC. TOP2A, RRM2, and POLA1 may be targets for the treatment of CC. However, many studies are needed to validate our findings.
Collapse
Affiliation(s)
- Lijun Yu
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meiyan Wei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fengyan Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Fu Y, Long MJC, Wisitpitthaya S, Inayat H, Pierpont TM, Elsaid IM, Bloom JC, Ortega J, Weiss RS, Aye Y. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nat Chem Biol 2018; 14:943-954. [PMID: 30150681 DOI: 10.1038/s41589-018-0113-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Abstract
Since the origins of DNA-based life, the enzyme ribonucleotide reductase (RNR) has spurred proliferation because of its rate-limiting role in de novo deoxynucleoside-triphosphate (dNTP) biosynthesis. Paradoxically, the large subunit, RNR-α, of this obligatory two-component complex in mammals plays a context-specific antiproliferative role. There is little explanation for this dichotomy. Here, we show that RNR-α has a previously unrecognized DNA-replication inhibition function, leading to growth retardation. This underappreciated biological activity functions in the nucleus, where RNR-α interacts with ZRANB3. This process suppresses ZRANB3's function in unstressed cells, which we show to promote DNA synthesis. This nonreductase function of RNR-α is promoted by RNR-α hexamerization-induced by a natural and synthetic nucleotide of dA/ClF/CLA/FLU-which elicits rapid RNR-α nuclear import. The newly discovered nuclear signaling axis is a primary defense against elevated or imbalanced dNTP pools that can exert mutagenic effects irrespective of the cell cycle.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marcus J C Long
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Huma Inayat
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Islam M Elsaid
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jordana C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.
| |
Collapse
|
7
|
Jiang C, Xu R, Li XX, Wang YY, Liang WQ, Zeng JD, Zhang SS, Xu XY, Yang Y, Zhang MY, Wang HY, Zheng XFS. p53R2 overexpression in cervical cancer promotes AKT signaling and EMT, and is correlated with tumor progression, metastasis and poor prognosis. Cell Cycle 2017; 16:1673-1682. [PMID: 28841361 DOI: 10.1080/15384101.2017.1320629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53R2 is a p53-inducible ribonucleotide reductase subunit involved in deoxyribonucleotide biosynthesis and DNA repair. Although p53R2 has been linked to human cancer, its role in cervical cancer remains unknown. In this study, we investigated the expression and clinical significance of p53R2 in early-stage cervical cancer. p53R2 expression is significantly upregulated at both mRNA and protein levels in cervical cancer cells and tissues, compared with that in matched normal cervical cells and tissues, respectively. p53R2 overexpression is associated with increased risk of pelvic lymph node metastasis (PLNM, p = 0.001) and cancer relapse (p = 0.009). Patients with high p53R2 expression have a shorter overall survival (OS) and disease-free survival (DFS). p53R2 is an independent factor for predicting OS and DFS of cervical cancer patients. We further show that p53R2 is important for oncogenic growth, migration and invasion in cervical cancer cells. Mechanistically, p53R2 promotes Akt signaling and epithelial-mesenchymal transition (EMT). In conclusion, our study demonstrates for the first time that p53R2 protein is overexpressed in early-stage cervical cancer and unravels some unconventional oncogenic functions of p53R2. p53R2 may be a useful prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Chao Jiang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Rui Xu
- b Department of Internal Medicine , Cancer Center of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Xiao-Xing Li
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yan-Yan Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Wen-Qian Liang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Ju-Deng Zeng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Shan-Shan Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Xiao-Yi Xu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yang Yang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Mei-Yin Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Hui-Yun Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| | - X F Steven Zheng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
8
|
Lou M, Liu Q, Ren G, Zeng J, Xiang X, Ding Y, Lin Q, Zhong T, Liu X, Zhu L, Qi H, Shen J, Li H, Shao J. Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy. J Biol Chem 2017; 292:9136-9149. [PMID: 28411237 DOI: 10.1074/jbc.m117.783365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/11/2017] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RR) is the rate-limiting enzyme in DNA synthesis, catalyzing the reduction of ribonucleotides to deoxyribonucleotides. During each enzymatic turnover, reduction of the active site disulfide in the catalytic large subunit is performed by a pair of shuttle cysteine residues in its C-terminal tail. Thioredoxin (Trx) and glutaredoxin (Grx) are ubiquitous redox proteins, catalyzing thiol-disulfide exchange reactions. Here, immunohistochemical examination of clinical colorectal cancer (CRC) specimens revealed that human thioredoxin1 (hTrx1), but not human glutaredoxin1 (hGrx1), was up-regulated along with human RR large subunit (RRM1) in cancer tissues, and the expression levels of both proteins were correlated with cancer malignancy stage. Ectopically expressed hTrx1 significantly increased RR activity, DNA synthesis, and cell proliferation and migration. Importantly, inhibition of both hTrx1 and RRM1 produced a synergistic anticancer effect in CRC cells and xenograft mice. Furthermore, hTrx1 rather than hGrx1 was the efficient reductase for RRM1 regeneration. We also observed a direct protein-protein interaction between RRM1 and hTrx1 in CRC cells. Interestingly, besides the known two conserved cysteines, a third cysteine (Cys779) in the RRM1 C terminus was essential for RRM1 regeneration and binding to hTrx1, whereas both Cys32 and Cys35 in hTrx1 played a counterpart role. Our findings suggest that the up-regulated RRM1 and hTrx1 in CRC directly interact with each other and promote RR activity, resulting in enhanced DNA synthesis and cancer malignancy. We propose that the RRM1-hTrx1 interaction might be a novel potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Meng Lou
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Liu
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | - Xueping Xiang
- the Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China, and
| | | | - Qinghui Lin
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingting Zhong
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xia Liu
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lijun Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongyan Qi
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Shen
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haoran Li
- Takeda Pharmaceuticals International Company, Cambridge, Massachusetts 02139
| | - Jimin Shao
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China,
| |
Collapse
|
9
|
Fang Z, Song R, Gong C, Zhang X, Ren G, Li J, Chen Y, Qiu L, Mei L, Zhang R, Xiang X, Chen X, Shao J. Ribonucleotide reductase large subunit M1 plays a different role in the invasion and metastasis of papillary thyroid carcinoma and undifferentiated thyroid carcinoma. Tumour Biol 2015; 37:3515-26. [DOI: 10.1007/s13277-015-4175-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/28/2015] [Indexed: 01/11/2023] Open
|
10
|
Fang Z, Gong C, Liu H, Zhang X, Mei L, Song M, Qiu L, Luo S, Zhu Z, Zhang R, Gu H, Chen X. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2. Biochem Biophys Res Commun 2015; 464:407-15. [PMID: 26093293 DOI: 10.1016/j.bbrc.2015.06.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023]
Abstract
As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Zejun Fang
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Chaoju Gong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hong Liu
- Zhejiang Normal University - Jinhua People's Hospital Joint Center for Biomedical Research, Jinhua, Zhejiang, 321004, China
| | - Xiaomin Zhang
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Lingming Mei
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Mintao Song
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Lanlan Qiu
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Shuchai Luo
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Zhihua Zhu
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Ronghui Zhang
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Hongqian Gu
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Xiang Chen
- Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China.
| |
Collapse
|