1
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2024. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
2
|
Wang H, Liu X, Zhao C, Yan J, Wang Z, Dahlgren RA, Qian Q, Wang X. Interference of gut-brain-gonad axis originating from triclocarban exposure to parent zebrafish induces offspring embryonic development abnormality by up-regulation of maternal circSGOL1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106782. [PMID: 38071900 DOI: 10.1016/j.aquatox.2023.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Triclocarban (TCC) is a widely used antibacterial ingredient possessing acute toxicity effects; however, its chronic toxicity and underlying molecular mechanisms remain uncertain. Herein, we demonstrated that chronic TCC exposure affects the growth and development of adult zebrafish through inducing an intestinal flora disorder in the gut. The imbalance of intestinal flora caused functional barriers within the intestinal-brain-gonadal axis. This resulted in a series of anomalous nerve and motor behaviors, and reproductive toxicity as reflected in pathological damage to parental gonads and F1-larval developmental malformations. Abnormal development of F1 larvae was attributed to apoptosis induced by the up-regulation of circSGOL1. This up-regulation affected the activity and localization of the hnRNP A1 protein, which then promoted overexpression of pro-apoptotic related genes that ultimately lead to apoptosis during early embryonic development. Overall, these novel findings systematically elucidated the TCC toxicity mechanism in parent-offspring dyads, and provide important theoretical guidance for early risk warning and control of chronic TCC toxicity.
Collapse
Affiliation(s)
- Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; College of Publich Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xingcheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chenxi Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, UC 95616, USA
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- College of Publich Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Chen B, Hu H, Chen X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front Genet 2023; 14:1110656. [PMID: 36911405 PMCID: PMC9998691 DOI: 10.3389/fgene.2023.1110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a tumor-associated antigen (known as p90), is highly expressed in most solid and hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A (PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction, thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in tumorigeneses such as cell proliferation, invasion, and migration, as well as cancer drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are complex and not yet fully understood. Many previous studies have also demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a promising biomarker in the diagnosis of certain types of cancer. In this Review, we focus on recent advances relating to CIP2A/p90 and their implications for future research.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Wiebe DS, Omelyanchuk NA, Mukhin AM, Grosse I, Lashin SA, Zemlyanskaya EV, Mironova VV. Fold-Change-Specific Enrichment Analysis (FSEA): Quantification of Transcriptional Response Magnitude for Functional Gene Groups. Genes (Basel) 2020; 11:genes11040434. [PMID: 32316383 PMCID: PMC7230499 DOI: 10.3390/genes11040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022] Open
Abstract
Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes from transcriptome data with respect to their fold changes. FSEA identifies Gene Ontology (GO) terms, which are shared by the group of genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA are fold-change-specifically (e.g., weakly, moderately, or strongly) affected by a stimulus under investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of the fold-change-specific GO terms are invisible by classical algorithms for functional gene enrichment, Singular Enrichment Analysis (SEA), and Gene Set Enrichment Analysis (GSEA). These are GO terms not enriched compared to the genome background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated response can be the valuable source to search for possible regulators, markers, and therapeutic targets in oncogenic processes. Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and a web-server.
Collapse
Affiliation(s)
- Daniil S. Wiebe
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (D.S.W.)
| | - Nadezhda A. Omelyanchuk
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (D.S.W.)
| | - Aleksei M. Mukhin
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (D.S.W.)
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Sergey A. Lashin
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (D.S.W.)
- LCT & EB, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (D.S.W.)
- LCT & EB, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victoria V. Mironova
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (D.S.W.)
- LCT & EB, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
5
|
Khan MM, Ullah U, Khan MH, Kong L, Moulder R, Välikangas T, Bhosale SD, Komsi E, Rasool O, Chen Z, Elo LL, Westermarck J, Lahesmaa R. CIP2A Constrains Th17 Differentiation by Modulating STAT3 Signaling. iScience 2020; 23:100947. [PMID: 32171124 PMCID: PMC7068643 DOI: 10.1016/j.isci.2020.100947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is an oncogene and a potential cancer therapy target protein. Accordingly, a better understanding of the physiological function of CIP2A, especially in the context of immune cells, is a prerequisite for its exploitation in cancer therapy. Here, we report that CIP2A negatively regulates interleukin (IL)-17 production by Th17 cells in human and mouse. Interestingly, concomitant with increased IL-17 production, CIP2A-deficient Th17 cells had increased strength and duration of STAT3 phosphorylation. We analyzed the interactome of phosphorylated STAT3 in CIP2A-deficient and CIP2A-sufficient Th17 cells and indicated together with genome-wide gene expression profiling, a role of Acylglycerol Kinase (AGK) in the regulation of Th17 differentiation by CIP2A. We demonstrated that CIP2A regulates the strength of the interaction between AGK and STAT3, and thereby modulates STAT3 phosphorylation and expression of IL-17 in Th17 cells.
Collapse
Affiliation(s)
- Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Ubaid Ullah
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Meraj H Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Lingjia Kong
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; The Broad Institute of MIT and Harvard, Cambridge, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, USA
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Doctoral Programme in Mathematics and Computer Sciences (MATTI), University of Turku, Turku, Finland
| | - Santosh Dilip Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Elina Komsi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Zhi Chen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland.
| |
Collapse
|
6
|
Mu J, Fan L, Liu D, Zhu D. Overexpression of shugoshin1 predicts a poor prognosis for prostate cancer and promotes metastasis by affecting epithelial-mesenchymal transition. Onco Targets Ther 2019; 12:1111-1118. [PMID: 30799941 PMCID: PMC6371935 DOI: 10.2147/ott.s191157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective The aim of the study was to investigate the role of shugoshinl (SGO1) in human prostate cancer (PCa). Materials and methods Quantitative real-time PCR (qRT-PCR) was used to determine the expression of SGO1 in PCa tissues and cell lines. The correlation between SGO1 expression and clinicopathological characteristics of PCa patients was analyzed using Kaplan–Meier analysis. SGO1 siRNA was successfully constructed and transfected into PCa cell lines (LNCaP and PC3). The knockdown efficacy was assessed by qRT-PCR. MTT assay and Transwell assay were conducted to observe the effect of SGO1 on the proliferation and invasion of PCa cell lines. Results SGO1-expression levels were found to be higher in the PCa tissues and cell lines. Correlation was identified between the expression of SGO1 and preoperative prostate-specific antigen (P=0.017), lymph-node metastasis (P=0.044), and Gleason score (P=0.041). Patients with higher SGO1 expression displayed more advanced clinicopathological characteristics in addition to a shorter biochemical recurrence-free survival time. Additionally, SGO1 knockdown resulted in the inhibition of PCa cell proliferation, migration, and invasion. Conclusion Taken together, the findings of the current study present evidence suggesting that SGO1 could inhibit the growth and invasion of PCa cells, highlighting its potential as a novel therapeutic target for the treatment of PCa.
Collapse
Affiliation(s)
- Jiagui Mu
- Department of Urology, The Second People's Hospital of Lianyungang, Lianyungang Tumor Hospital, Lianyungang Hospital Affiliated to Bengbu Medical University, Haizhou District, Lianyungang 22200, China,
| | - Li Fan
- Department of Urology, The Second People's Hospital of Lianyungang, Lianyungang Tumor Hospital, Lianyungang Hospital Affiliated to Bengbu Medical University, Haizhou District, Lianyungang 22200, China,
| | - Duo Liu
- Department of Urology, The Second People's Hospital of Lianyungang, Lianyungang Tumor Hospital, Lianyungang Hospital Affiliated to Bengbu Medical University, Haizhou District, Lianyungang 22200, China,
| | - Dongsheng Zhu
- Department of Graduate School Urology, Tianjin Medical University, Heping District, Tianjin 300000, China,
| |
Collapse
|
7
|
Navarro-Domínguez B, Ruiz-Ruano FJ, Cabrero J, Corral JM, López-León MD, Sharbel TF, Camacho JPM. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci Rep 2017; 7:45200. [PMID: 28367986 PMCID: PMC5377258 DOI: 10.1038/srep45200] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
For many years, parasitic B chromosomes have been considered genetically inert elements. Here we show the presence of ten protein-coding genes in the B chromosome of the grasshopper Eyprepocnemis plorans. Four of these genes (CIP2A, GTPB6, KIF20A, and MTG1) were complete in the B chromosome whereas the six remaining (CKAP2, CAP-G, HYI, MYCB2, SLIT and TOP2A) were truncated. Five of these genes (CIP2A, CKAP2, CAP-G, KIF20A, and MYCB2) were significantly up-regulated in B-carrying individuals, as expected if they were actively transcribed from the B chromosome. This conclusion is supported by three truncated genes (CKAP2, CAP-G and MYCB2) which showed up-regulation only in the regions being present in the B chromosome. Our results indicate that B chromosomes are not so silenced as was hitherto believed. Interestingly, the five active genes in the B chromosome code for functions related with cell division, which is the main arena where B chromosome destiny is played. This suggests that B chromosome evolutionary success can lie on its gene content.
Collapse
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - José María Corral
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Department of Bioanalytics, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | | | - Timothy F. Sharbel
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4J8, Canada
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Wang J, Okkeri J, Pavic K, Wang Z, Kauko O, Halonen T, Sarek G, Ojala PM, Rao Z, Xu W, Westermarck J. Oncoprotein CIP2A is stabilized via interaction with tumor suppressor PP2A/B56. EMBO Rep 2017; 18:437-450. [PMID: 28174209 DOI: 10.15252/embr.201642788] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 01/20/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two-hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N-terminal CIP2A fragment (amino acids 1-560) at 3.0 Å resolution, and by subsequent structure-based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N-terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure-function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,College of Life Sciences, Nankai University, Tianjin, China
| | - Juha Okkeri
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland
| | - Karolina Pavic
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Otto Kauko
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku, Turku, Finland
| | - Tuuli Halonen
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland
| | - Grzegorz Sarek
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Päivi M Ojala
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku, Turku, Finland .,Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku, Turku, Finland
| |
Collapse
|
9
|
González-Alonso P, Cristóbal I, Manso R, Madoz-Gúrpide J, García-Foncillas J, Rojo F. PP2A inhibition as a novel therapeutic target in castration-resistant prostate cancer. Tumour Biol 2015; 36:5753-5. [DOI: 10.1007/s13277-015-3849-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/24/2015] [Indexed: 12/18/2022] Open
|
10
|
Leucine-rich repeat-containing protein 59 mediates nuclear import of cancerous inhibitor of PP2A in prostate cancer cells. Tumour Biol 2015; 36:6383-90. [PMID: 25833693 DOI: 10.1007/s13277-015-3326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
Using yeast two-hybrid analysis, we identified several novel protein interactions for the oncoprotein Cancerous Inhibitor of PP2A (CIP2A) and confirmed a subset of these interactions in human cancer cell lines. Analysis of the interaction in prostate carcinoma cells between CIP2A and leucine-rich repeat-containing protein 59 (LRRC59) suggests that CIP2A is translocated into the nucleus at G2/M through its association with LRRC59. Recent work by others has demonstrated that nuclear CIP2A disrupts mitotic checkpoints, which promotes deregulation of the cell cycle and increases cancerous phenotypes. Thus, we provide a novel therapeutic mechanism for inhibiting CIP2A function in cancerous cells via targeting the CIP2A-LRRC59 interaction.
Collapse
|