1
|
Starosta RT, Siebert M, Vairo FPE, Costa BLDL, Ponzoni CT, Schwartz IVD, Cerski CTS. Histomorphometric analysis of liver biopsies of treated patients with Gaucher disease type 1. AUTOPSY AND CASE REPORTS 2021; 11:e2021306. [PMID: 34458174 PMCID: PMC8387085 DOI: 10.4322/acr.2021.306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal disorder caused by a disturbance in the metabolism of glucocerebroside in the macrophages. Most of its manifestations – hepatosplenomegaly, anemia, thrombocytopenia, and bone pain – are amenable to a macrophage-target therapy such as enzyme replacement. However, there is increasing evidence that abnormalities of the liver persist despite the specific GD treatment. In this work, we adapted histomorphometry techniques to the study of hepatocytes in GD using liver tissue of treated patients, developing the first morphometrical method for canalicular quantification in immunohistochemistry-stained liver biopsies, and exploring histomorphometric characteristics of GD. This is the first histomorphometric technique developed for canalicular analysis on histological liver biopsy samples.
Collapse
Affiliation(s)
- Rodrigo Tzovenos Starosta
- Universidade Federal do Rio Grande do Sul, Graduate Program in Genetics and Molecular Biology, Porto Alegre, RS, Brasil.,Washington University, Department of Pediatrics, Saint Louis, MO, USA
| | - Marina Siebert
- Hospital de Clínicas de Porto Alegre, Laboratorial Research Unit, Experimental Research Center, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Graduate Program in Science in Gastroenterology and Hepatology, Porto Alegre, RS, Brasil
| | - Filippo Pinto E Vairo
- Mayo Clinic, Center for Individualized Medicine, Rochester, MN, USA.,Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | | | | | - Ida Vanessa Doederlein Schwartz
- Universidade Federal do Rio Grande do Sul, Graduate Program in Genetics and Molecular Biology, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Department of Genetics, Porto Alegre, RS, Brasil.,Hospital de Clínicas de Porto Alegre, Medical Genetics Service, Porto Alegre, RS, Brasil
| | - Carlos Thadeu Schmidt Cerski
- Universidade Federal do Rio Grande do Sul, Graduate Program in Science in Gastroenterology and Hepatology, Porto Alegre, RS, Brasil.,Hospital de Clínicas de Porto Alegre, Department of Surgical Pathology, Porto Alegre, RS, Brasil
| |
Collapse
|
2
|
Blocker SJ, Cook J, Mowery YM, Everitt JI, Qi Y, Hornburg KJ, Cofer GP, Zapata F, Bassil AM, Badea CT, Kirsch DG, Johnson GA. Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas. Radiol Imaging Cancer 2021; 3:e200103. [PMID: 34018846 DOI: 10.1148/rycan.2021200103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose To establish a platform for quantitative tissue-based interpretation of cytoarchitecture features from tumor MRI measurements. Materials and Methods In a pilot preclinical study, multicontrast in vivo MRI of murine soft-tissue sarcomas in 10 mice, followed by ex vivo MRI of fixed tissues (termed MR histology), was performed. Paraffin-embedded limb cross-sections were stained with hematoxylin-eosin, digitized, and registered with MRI. Registration was assessed by using binarized tumor maps and Dice similarity coefficients (DSCs). Quantitative cytometric feature maps from histologic slides were derived by using nuclear segmentation and compared with registered MRI, including apparent diffusion coefficients and transverse relaxation times as affected by magnetic field heterogeneity (T2* maps). Cytometric features were compared with each MR image individually by using simple linear regression analysis to identify the features of interest, and the goodness of fit was assessed on the basis of R2 values. Results Registration of MR images to histopathologic slide images resulted in mean DSCs of 0.912 for ex vivo MR histology and 0.881 for in vivo MRI. Triplicate repeats showed high registration repeatability (mean DSC, >0.9). Whole-slide nuclear segmentations were automated to detect nuclei on histopathologic slides (DSC = 0.8), and feature maps were generated for correlative analysis with MR images. Notable trends were observed between cell density and in vivo apparent diffusion coefficients (best line fit: R2 = 0.96, P < .001). Multiple cytoarchitectural features exhibited linear relationships with in vivo T2* maps, including nuclear circularity (best line fit: R2 = 0.99, P < .001) and variance in nuclear circularity (best line fit: R2 = 0.98, P < .001). Conclusion An infrastructure for registering and quantitatively comparing in vivo tumor MRI with traditional histologic analysis was successfully implemented in a preclinical pilot study of soft-tissue sarcomas. Keywords: MRI, Pathology, Animal Studies, Tissue Characterization Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Stephanie J Blocker
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - James Cook
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Yvonne M Mowery
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Jeffrey I Everitt
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Yi Qi
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Kathryn J Hornburg
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Gary P Cofer
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Fernando Zapata
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Alex M Bassil
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Cristian T Badea
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - David G Kirsch
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - G Allan Johnson
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| |
Collapse
|