1
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
3
|
LncRNA PART1 inhibits glioma proliferation and migration via miR-374b/SALL1 axis. Neurochem Int 2022; 157:105347. [DOI: 10.1016/j.neuint.2022.105347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023]
|
4
|
Liu Z, Meng H, Fang M, Guo W. Identification and Potential Mechanisms of a 7-MicroRNA Signature That Predicts Prognosis in Patients with Lower-Grade Glioma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3251891. [PMID: 34845420 PMCID: PMC8627350 DOI: 10.1155/2021/3251891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Background Lower-grade glioma is an intracranial cancer that may develop into glioblastoma with high mortality. The main objective of our study is to develop microRNA for LGG patients which will provide novel prognostic biomarkers along with therapeutic targets. Methods Clinicopathological data of LGG patients and their RNA expression profile were downloaded through The Cancer Genome Atlas Relevant expression profiles of RNA, and clinicopathological data of the LGG patients had been extracted from the database of "The Cancer Genome Atlas." Differential expression analysis had been conducted for identification of the differentially expressed microRNAs as well as mRNAs in LGG samples and normal ones. ROC curves and K-M plots were plotted to confirm performance and for predictive accuracy. For the confirmation of microRNAs as an independent prognostic factor, an independent prognosis analysis was conducted. Moreover, target differentially expressed genes of these identified prognostic microRNAs that were extracted and protein-protein interaction networks were developed. Moreover, the biological functions of signature were determined through Genome Ontology analysis, genome pathway analysis, and Kyoto Encyclopedia of Genes. Results 7-microRNA signature was identified that has the ability of categorization of individuals with LGG into high- and low-risk groups on the basis of significant difference in survival during training and testing cohorts (P < 0.001). The 7-microRNA signature had appeared to be robust in predictive accuracy (all AUC> 0.65). It was also approved with multivariate Cox regression along with some traditional clinical practices that we can use 7-microRNA signature for therapeutic purposes as a self-regulating predictive OS factor (P < 0.001). KEGG and Gene Ontology (GO) analyses reported that 7-microRNAs had mainly developed in important pathways related with glioma, e.g., the "cAMP signaling pathway," "glutamatergic synapses," and "calcium signaling pathway". Conclusion A newly discovered 7-microRNA signature could be a potential target for the diagnosis and treatment for LGG patients.
Collapse
Affiliation(s)
- Zhizheng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongliang Meng
- Department of Neurosurgery, Gan Zhou People's Hospital, Gan Zhou, China
| | - Miaoxian Fang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Wenlong Guo
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Caponnetto F, Dalla E, Mangoni D, Piazza S, Radovic S, Ius T, Skrap M, Di Loreto C, Beltrami AP, Manini I, Cesselli D. The miRNA Content of Exosomes Released from the Glioma Microenvironment Can Affect Malignant Progression. Biomedicines 2020; 8:biomedicines8120564. [PMID: 33287106 PMCID: PMC7761654 DOI: 10.3390/biomedicines8120564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Low-grade gliomas (LGG) are infiltrative primary brain tumors that in 70% of the cases undergo anaplastic transformation, deeply affecting prognosis. However, the timing of progression is heterogeneous. Recently, the tumor microenvironment (TME) has gained much attention either as prognostic factor or therapeutic target. Through the release of extracellular vesicles, the TME contributes to tumor progression by transferring bioactive molecules such as microRNA. The aim of the study was to take advantage of glioma-associated stem cells (GASC), an in vitro model of the glioma microenvironment endowed with a prognostic significance, and their released exosomes, to investigate the possible role of exosome miRNAs in favoring the anaplastic transformation of LGG. Therefore, by deep sequencing, we analyzed and compared the miRNA profile of GASC and exosomes obtained from LGG patients characterized by different prognosis. Results showed that exosomes presented a different signature, when compared to their cellular counterpart and that, although sharing several miRNAs, exosomes of patients with a bad prognosis, selectively expressed some miRNAs possibly responsible for the more aggressive phenotype. These findings get insights into the value of TME and exosomes as potential biomarkers for precision medicine approaches aimed at improving LGG prognostic stratification and therapeutic strategies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Silvano Piazza
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | | | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
6
|
Zhang JH, Hou R, Pan Y, Gao Y, Yang Y, Tian W, Zhu YB. A five-microRNA signature for individualized prognosis evaluation and radiotherapy guidance in patients with diffuse lower-grade glioma. J Cell Mol Med 2020; 24:7504-7514. [PMID: 32412186 PMCID: PMC7339211 DOI: 10.1111/jcmm.15377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the prognostic value of IDH and other gene mutations found in diffuse glioma, markers that judge individual prognosis of patients with diffuse lower‐grade glioma (LGG) are still lacking. This study aims to develop an expression‐based microRNA signature to provide survival and radiotherapeutic response prediction for LGG patients. MicroRNA expression profiles and relevant clinical information of LGG patients were downloaded from The Cancer Genome Atlas (TCGA; the training group) and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analysis, random survival forests‐variable hunting (RSFVH) screening and receiver operating characteristic (ROC) were used to identify the prognostic microRNA signature. ROC and TimeROC curves were plotted to compare the predictive ability of IDH mutation and the signature. Stratification analysis was conducted in patients with radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore the biological function of the signature. We identified a five‐microRNA signature that can classify patients into low‐risk or high‐risk group with significantly different survival in the training and test datasets (P < 0.001). The five‐microRNA signature was proved to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). Stratification analysis found the signature could further divide patients after radiotherapy into two risk groups. GO and KEGG analyses revealed that microRNAs from the prognostic signature were mainly enriched in cancer‐associated pathways. The newly discovered five‐microRNA signature could predict survival and radiotherapeutic response of LGG patients based on individual microRNA expression.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Ruiqin Hou
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Yuhualei Pan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Yuhan Gao
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Ying Yang
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Wenqin Tian
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Yan-Bing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Sun B, Zhao X, Ming J, Liu X, Liu D, Jiang C. Stepwise detection and evaluation reveal miR-10b and miR-222 as a remarkable prognostic pair for glioblastoma. Oncogene 2019; 38:6142-6157. [PMID: 31289362 PMCID: PMC6756080 DOI: 10.1038/s41388-019-0867-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/31/2019] [Accepted: 05/01/2019] [Indexed: 11/08/2022]
Abstract
Despite the existence of many clinical and molecular factors reported that contribute to survival in glioblastoma, prevailing studies fell into partial or local feature selection for survival analysis. We proposed a feature selection strategy including not only joint covariate detection but also its evaluations, and performed it on miRNA expression profiles with glioblastoma. MiR-10b and miR-222 were selected as the most significant two-dimensional feature. Crucially, we integrated in vitro experiments on GBM cells and in vivo studies on a mouse model of human glioma to elucidate the synergistic effects between miR-10b and miR-222. Inhibition of miR-10b and miR-222 strongly suppress GBM cells growth, invasion, and induce apoptosis by co-targeting PTEN and leading to activation of p53 ultimately. We also demonstrated that miR-10b and miR-222 co-target BIM to induce apoptosis independent of p53 status. The results define mir-10b and mir-222 important roles in gliomagenesis and provided a reliable survival analysis strategy.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Xudong Zhao
- College of Information and Computer Engineering, Northeast Forestry University, 150040, Harbin, China.
| | - Jianguang Ming
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Xing Liu
- Beijing Neurosurgical Institute, 100050, Beijing, China
| | - Daming Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
8
|
Li W, Li C, Xiong Q, Tian X, Ru Q. MicroRNA-10b-5p downregulation inhibits the invasion of glioma cells via modulating homeobox B3 expression. Exp Ther Med 2019; 17:4577-4585. [PMID: 31105788 PMCID: PMC6507523 DOI: 10.3892/etm.2019.7506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNA-10b (miR-10b) has been reported to be specifically upregulated in glioma tissues and cell lines. The aim of the present study was to investigate the effect of miR-10b-5p on the proliferation and invasion of glioma cells, and the possible underlying molecular mechanism. Cell viability was evaluated using an MTT assay, and flow cytometry was performed for cell cycle analysis. The effects of miR-10b-5p on glioma cell migration and invasion were assessed using wound healing and Transwell assays, respectively. The activity of matrix metalloproteinase 2 (MMP2) was also determined using zymography. Furthermore, homeobox B3 (HOXB3) mRNA expression in glioma cells was examined using quantitative polymerase chain reaction analysis. The protein expression levels of HOXB3, high mobility group box 1 (HMGB1) and Ras homolog family member C (RhoC) were further measured using western blotting. It was observed that glioma cells transfected with miR-10b-5p inhibitor exhibited significantly decreased proliferation. The wound healing and Transwell assays demonstrated that the miR-10b-5p inhibitor reduced the ability of glioma cells to migrate and invade, while transfection with miR-10b-5p mimic exhibited the opposite effect. HOXB3 was downregulated by miR-10b-5p at both the mRNA and protein levels. In addition, the expression of proteins associated with migration and invasion, including HMGB1, RhoC and MMP2, was upregulated in glioma cells transfected with miR-10b-5p mimic, while these proteins were downregulated in cells transfected with miR-10b-5p inhibitor. Taken together, the findings of the present study indicated that miR-10b-5p downregulation suppressed glioma cell proliferation and invasion, possibly by modulating HOXB3, which may provide a novel bio-target for glioma therapy.
Collapse
Affiliation(s)
- Weiling Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Chaoying Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
9
|
Xiong DD, Xu WQ, He RQ, Dang YW, Chen G, Luo DZ. In silico analysis identified miRNA‑based therapeutic agents against glioblastoma multiforme. Oncol Rep 2019; 41:2194-2208. [PMID: 30816530 PMCID: PMC6412522 DOI: 10.3892/or.2019.7022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) contribute to the development of various malignant neoplasms, including glioblastoma multiforme (GBM). The present study aimed to explore the pathogenesis of GBM and to identify latent therapeutic agents for patients with GBM, based on an in silico analysis. Gene chips that provide miRNA expression profiling in GBM were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) were also determined via the RobustRankAggreg algorithm. The target genes of DEMs were predicted and then intersected with GBM‑associated genes that were collected from the Gene Expression Profiling Interactive Analysis. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the overlapping genes were then performed. Simultaneously, a connectivity map (CMap) analysis was performed to screen for potential therapeutic agents for GBM. A total of 10 DEMs (hsa‑miR‑196a, hsa‑miR‑10b, hsa‑miR‑196b, hsa‑miR‑18b, hsa‑miR‑542‑3p, hsa‑miR‑129‑3p, hsa‑miR‑1224‑5p, hsa‑miR‑876‑3p and hsa‑miR‑770‑5p) were obtained from three GEO gene chips (GSE25631, GSE42657 and GSE61710). Then, 1,720 target genes of the 10 miRNAs and 4,185 differently expressed genes in GBM were collected. By intersecting the aforementioned gene clusters, the present study identified 390 overlapping genes. GO and KEGG analyses of the 390 genes demonstrated that these genes were involved in certain cancer‑associated biological functions and pathways. Eight genes [(GTPase NRas (NRAS), calcium/calmodulin‑dependent protein kinase type II subunit Gamma (CAMK2G), platelet‑derived growth factor receptor alpha (PDGFRA), calmodulin 3 (CALM3), cyclin‑dependent kinase 6 (CDK6), calcium/calmodulin‑dependent protein kinase type II subunit beta (CAMK2B), retinoblastoma‑associated protein (RB1) and protein kinase C beta type (PRKCB)] that were centralized in the glioma pathway were selected for CMap analysis. Three chemicals (W‑13, gefitinib and exemestane) were identified as putative therapeutic agents for GBM. In summary, the present study identified three miRNA‑based chemicals for use as a therapy for GBM. However, more experimental data are needed to verify the therapeutic properties of these latent drugs in GBM.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Qing Xu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
10
|
Zhang Y, Chen J, Xue Q, Wang J, Zhao L, Han K, Zhang D, Hou L. Prognostic Significance of MicroRNAs in Glioma: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4015969. [PMID: 31032345 PMCID: PMC6457304 DOI: 10.1155/2019/4015969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Different microRNAs (miRs) have been demonstrated to relate with the outcome of glioma patients, while the conclusions are inconsistent. We perform a meta-analysis to clarify the relationship between different miRs and prognosis of glioma. METHODS Related studies were retrieved from PubMed, Embase, and Cochrane Library. Pooled hazard ratios (HRs) of different miRs expression for survival and 95% confidence intervals (CIs) were calculated using random-effects model. RESULTS A total of 15 miRs with 4708 glioma patients were ultimately included. Increased expression of miR-15b (HR, 1.584; 95% CI, 1.199-2.092), 21 (HR, 1.591; 95% CI, 1.278-1.981), 148a (HR, 1.122; 95% CI, 1.023-1.231), 196 (HR, 1.877; 95% CI, 1.033-3.411), 210 (HR, 1.251; 95% CI, 1.010-1.550), and 221 (HR, 1.269; 95% CI, 1.054-1.527) or decreased expression of miR-106a (HR, 0.809; 95% CI, 0.655-0.998) and 124 (HR, 0.833; 95% CI, 0.729-0.952) was correlated with poor outcome of glioma patients. CONCLUSIONS miR-15b, 21, 148a, 196, 210, 221, 106a, and 124 are valuable biomarkers for the prognosis of glioma which might be used in clinical settings.
Collapse
Affiliation(s)
- Yanming Zhang
- Second Sub-Team, Fourth Team, Undergraduate Management Team, Second Military Medical University, Shanghai, China
| | - Jigang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Xue
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Zhao
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kaiwei Han
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Dong Q, Yuan G, Liu M, Xie Q, Hu J, Wang M, Liu S, Ma X, Pan Y. Downregulation of microRNA-374a predicts poor prognosis in human glioma. Exp Ther Med 2019; 17:2077-2084. [PMID: 30867694 DOI: 10.3892/etm.2019.7190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Certain microRNAs (miRNAs/miRs) may be used as prognostic biomarkers in various types of cancer. The purpose of the present study was to identify miRNAs that were abnormally expressed in glioma of different grades, and to evaluate their clinical implications in patients with glioma. The differentially expressed miRNAs were evaluated from the expression profiles of six glioma tissues (three low-grade and three high-grade gliomas) determined using a microarray platform. Reverse transcription-quantitative polymerase chain reaction analysis was used to further verify the aberrant expression of the candidate miRNA in a set of 42 patients and 5 healthy controls. The miRNA target genes were predicted and the protein-protein interaction network was generated; furthermore, functional enrichment analysis of the target genes in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was performed. Kaplan-Meier curves and Log-rank analysis, as well as multivariate Cox regression analysis were performed to assess the association of the candidate miRNA with patient survival. A total of 15 differentially expressed miRNAs, including 13 downregulated and 2 upregulated miRNAs, were identified by comparison of low-grade and high-grade glioma tissues. The miR-374a expression of high-grade gliomas was significantly lower than that of low-grade gliomas (fold change, -4.43; P=0.027). The expression levels of miR-374a gradually decreased with the increase of the pathological grade of glioma. Pearson's Chi-square test was used to determine the association of miR-374a expression with several clinicopathological factors. Furthermore, low expression of miR-374a was determined to be an independent prognostic marker and that it was significantly associated with overall survival (P=0.0213). GO and KEGG pathway analysis revealed that the target genes of miR-374a may be involved in the regulation of the RNA polymerase II promoter and mTOR signaling pathway. The four hub genes (CCND1, SP1, CDK4, CDK6) were also identified by PPI network analysis. In conclusion, the present study indicated that miR-374a may be used as a promising prognostic biomarker for the screening of high-risk populations and for the assessment of the prognosis of patients with glioma.
Collapse
Affiliation(s)
- Qiang Dong
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Guoqiang Yuan
- Institute of Neurology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Min Liu
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Qiqi Xie
- Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Jianhong Hu
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Maolin Wang
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Shangyu Liu
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xiaojun Ma
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yawen Pan
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Institute of Neurology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
12
|
Zhang Y, Wang LJ, Yang HQ, Wang R, Wu HJ. MicroRNA-10b expression predicts long-term survival in patients with solid tumor. J Cell Physiol 2018; 234:1248-1256. [PMID: 30191959 DOI: 10.1002/jcp.27138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/09/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Numerous studies have evaluated the significance of the microRNA-10b (miR-10b) in the development and progression of many cancers. Their findings revealed that increased expression of miR-10b is associated with unfavorable prognosis in patients with cancer. RESULTS A total of 1,834 patients from 19 studies were included in this study. A significantly shorter overall survival was observed in patients with increased expression of miR-10b (hazard ratio [HR] = 1.99, 95% confidence interval [CI]: 1.51-2.61). Statistical significance was also observed in subgroup meta-analysis stratified by the cancer type, cutoff value, analysis type, and sample size. Also, patients with a high expression level of miR-10b had a poorer disease-free survival rate (HR = 1.18, 95% CI: 1.05-1.33). In addition, the pooled odds ratios (ORs) showed that increased miR-10b was also associated with positive lymph node metastasis (OR = 2.09, 95% CI: 1.45-3.03), distant metastasis (OR = 2.40, 95% CI: 1.57-3.67), tumor size (OR = 3.86, 95% CI: 2.25-6.64), and poor clinical stage (OR = 5.02, 95% CI: 3.37-7.47). MATERIALS AND METHODS A systematic literature search was conducted on a number of electronic databases, including PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Springer, Google Scholar, and Gene expression omnibus. We retrieved the relevant articles to examine the association between the miR-10b expression levels and patients' prognosis. The meta-analysis was conducted using the RevMan 5.2 software and Stata SE12.0 software. CONCLUSIONS High miR-10b expression was correlated with poor clinical outcome, which indicated the potential clinical use of miR-10b as a molecular biomarker for cancer, particularly in assessing prognosis for patients with cancers. Further studies should be performed to verify the clinical utility of miR-10b in human solid tumors.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Li-Juan Wang
- Department of Nephrology, ShangRao People's Hospital, ShangRao, Jiangxi, China
| | - He-Quan Yang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong Wang
- Department of General Surgery, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hua-Jun Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Prognostic value of a microRNA signature as a novel biomarker in patients with lower-grade gliomas. J Neurooncol 2017; 137:127-137. [DOI: 10.1007/s11060-017-2704-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023]
|
14
|
MicroRNA-10b and the clinical outcomes of various cancers: A systematic review and meta-analysis. Clin Chim Acta 2017; 474:14-22. [DOI: 10.1016/j.cca.2017.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/15/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
|
15
|
Hou R, Wang D, Lu J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol Lett 2017; 13:5009-5015. [PMID: 28599502 DOI: 10.3892/ol.2017.6033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs are deregulated in numerous types of human cancers and have crucial roles in the carcinogenesis and progression of human cancers. MicroRNA-10b (miR-10b) has been studied in several types of human cancer. However, the expression and roles of miR-10b in cervical cancer remain unknown. In the present study, the expression, functions and molecular mechanisms of miR-10b were explored in cervical cancer. The present data revealed that miR-10b was significantly downregulated in cervical cancer tissues and cell lines. In addition, miR-10b overexpression inhibited the proliferation, migration and invasion of cervical cancer cells, while miR-10b under-expression had the opposite effect. Based on bioinformatics analysis, a luciferase reporter assay and western blot analysis, insulin-like growth factor-1 receptor (IGF-1R) was identified as a direct target of miR-10b in cervical cancer. In addition, IGF-1R small interfering RNA-mediated knockdown of IGF-1R also inhibited the proliferation, migration and invasion of the cervical cancer cells. In conclusion, the present study demonstrated that miR-10b serves an important role in cervical cancer progression by targeting IGF-1R.
Collapse
Affiliation(s)
- Ren Hou
- Department of Gynecology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Daixian Wang
- Department of Orthopedics, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Jian Lu
- Department of Orthopedics, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
16
|
Khella HWZ, Daniel N, Youssef L, Scorilas A, Nofech-Mozes R, Mirham L, Krylov SN, Liandeau E, Krizova A, Finelli A, Cheng Y, Yousef GM. miR-10b is a prognostic marker in clear cell renal cell carcinoma. J Clin Pathol 2017; 70:854-859. [PMID: 28360191 DOI: 10.1136/jclinpath-2017-204341] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022]
Abstract
AIMS Clear cell renal cell carcinoma (ccRCC) is the most common adult kidney cancer. It is an aggressive tumour with unpredictable outcome. The currently used clinical parameters are not always accurate for predicting disease behaviour. miR-10b is dysregulated in different malignancies including RCC. METHODS We assessed the clinical utility of miR-10b as a prognostic marker in 250 patients with primary ccRCC. We examined the correlation between miR-10b and clinicopathological parameters. We compared miR-10b expression among different RCC subtypes and normal kidney tissue. RESULTS We observed a stepwise decrease of miR-10b expression from normal kidney to primary ccRCC and a further decrease from primary to metastatic RCC. miR-10b expression was significantly lower in stages III/IV compared with stages I/II (p=0.038). Using a binary cut-off, miR-10b-positive patients had significantly longer disease-free survival (HR=0.47, CI 0.28 to 0.79, p=0.004). In the subgroup of patients with tumour size >4 cm, higher miR-10b expression was associated with significant longer disease-free and overall survival (p=0.001 and p=0.036, respectively). miR-10b was significantly downregulated in ccRCC compared with normal kidney (p<0.0001), and oncocytoma (p=0.031). It was also downregulated in chromophobe RCC. In addition, we identified a number of miR-10b-predicted targets and pathways that are involved in tumourigenesis. CONCLUSIONS Our data point to miR-10b as a promising prognostic marker in ccRCC with potential therapeutic applications.
Collapse
Affiliation(s)
- Heba W Z Khella
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Daniel
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Leza Youssef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | - Roy Nofech-Mozes
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Lorna Mirham
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sergey N Krylov
- Department of Chemistry, Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Evi Liandeau
- Department of Chemistry, University of Athens, Athens, Greece
| | - Adriana Krizova
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antonio Finelli
- Division of Urologic Oncology, Department of Surgery, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Cheng W, Ren X, Zhang C, Han S, Wu A. Expression and prognostic value of microRNAs in lower-grade glioma depends on IDH1/2 status. J Neurooncol 2017; 132:207-218. [PMID: 28091987 DOI: 10.1007/s11060-016-2368-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/25/2016] [Indexed: 01/01/2023]
Abstract
Histological and genomic characteristics are widely used in glioma management and research. This study investigated their relationship to the expression and prognostic value of microRNAs (miRNAs) in lower-grade glioma (LGG). A total of 447 LGG samples with available clinical and genomic information from The Cancer Genome Atlas database were reviewed. Samples with isocitrate dehydrogenase (IDH) 1/2 mutations (n = 366) were randomly divided into training and validation sets to establish and confirm a four-miRNA-based risk classifier. We found that IDH1/2 mutation status had greater impact than histological and other genomic features on miRNA expression patterns; 361/487 (74%) of miRNAs were differentially expressed according to IDH1/2 mutation status. Importantly, there were no miRNAs with the same prognostic significance among groups with different IDH1/2 mutation status. For IDH1/2-mut LGG, a four-miRNA risk classifier (miR-10b, miR-130b, miR-1304, and miR-302b) was established that could independently distinguish cases as high or low risk of poor prognosis in both training and validation sets. The risk classifier outperformed individual miRNAs and traditional prognostic factors in terms of sensitivity and specificity. Bioinformatic analyses indicated that high-risk samples were more mitotically active than low-risk samples. Taken together, IDH1/2 mutation status had a significant influence on miRNA expression and prognostication in LGG. The four-miRNA-based risk classifier can be used for risk stratification of IDH1/2-mut LGG.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| |
Collapse
|
18
|
Deshpande RP, Chandra Sekhar YBVK, Panigrahi M, Babu PP. SIRP Alpha Protein Downregulates in Human Astrocytoma: Presumptive Involvement of Hsa-miR-520d-5p and Hsa-miR-520d-3p. Mol Neurobiol 2016; 54:8162-8169. [PMID: 27900675 DOI: 10.1007/s12035-016-0302-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022]
Abstract
Astrocytomas are the most common brain tumors with poor survival in malignant forms. Signal regulatory protein alpha (SIRP alpha) is a transmembrane protein expressed on immune cells and macrophages and is reported to modulate tumor cell phagocytosis. In the present study, we investigated the involvement of miR-520d-5p and miR-520d-3p in regulation of SIRP alpha expression. Here, we report mRNA and protein expression profile of SIRP alpha in 39 surgically resected human astrocytoma tissue samples and 14 control brain tissue samples. Transcript expression pattern was studied by real-time PCR while Western blotting and immunohistochemistry were used to evaluate protein expression. Expression profile of miR-520d-5p and miR-520d-3p was studied by real-time PCR. Computational prediction was employed to analyze the binding of miR-520d-5p and miR-520d-3p for SIRP alpha mRNA. It is evident from preliminary investigation that SIRP alpha transcripts are expressed in control brain tissues, increased in low-grade (grade II) tumor tissues, and decreased with further grade progression (P < 0.05). SIRP alpha protein was moderately expressed in control brain tissues but under-expressed in low- and high-grade tissue samples (P < 0.05). Immunohistochemistry results further confirmed Western blot outcomes. Computational prediction supplemented with 3' and 5'UTR targeting analysis and correlation studies reveals that hsa-miR-520d-5p (P = 0.028, R 2 = 0.94) (95 % CI 0.15 to 0.99) and hsa-miR-520d-3p (P = 0.027, R 2 = 0.94) (95% CI 0.17 to 0.99) may be the putative microRNAs involved in regulation of SIRP alpha protein expression. Real-time PCR expression profile depicts that mature form of both miRNAs is significantly overexpressed in low-grade (GII) tumor tissue samples compared to control and high-grade (GIII and GIV) tissue samples. MiR-520d-5p and miR-520d-3p were found with expression pattern similar to SIRP alpha transcripts. We show that SIRP alpha protein is under-expressed in low and high grades of astrocytoma patients' tissue samples. Control brain tissues were found to be positive with SIRP alpha protein expression. Real-time PCR expression analysis confirms that miR-520d-5p and miR-520d-3p expression levels were significantly correlated with SIRP alpha transcripts in control, low-grade, and high-grade tissue samples. Computational prediction further evidenced for binding sites of these miRNAs on 3' and 5'UTR of SIRP alpha transcripts. Taken together, we predict that miR-520d-5p and miR-520d-3p may be having role in the regulation of under-expressed SIRP alpha protein expression.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | | | - Manas Panigrahi
- Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500003, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
19
|
Tume L, Cisneros C, Sevillano J, Pacheco-Tapia R, Matos D, Acevedo-Espínola R, Ubidia-Incio R, Rodríguez W. Desregulación de microARN en el cáncer: un enfoque terapéutico y diagnóstico. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|