1
|
Wu X, Hu S, Jia N, Zhang C, Liu C, Song J, Kuai L, Jiang W, Li B, Chen Q. Accurate network pharmacology and novel ingredients formula of herbal targeting estrogen signaling for psoriasis intervention. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118099. [PMID: 38554853 DOI: 10.1016/j.jep.2024.118099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a common chronic inflammatory skin disease, psoriasis is incompletely understood and brings a lot of distress to patients. The estrogen signaling pathway has been implicated in its pathogenesis, making it a potential therapeutic target. Si Cao Formula (SCF) has demonstrated promise in treating psoriasis clinically. However, its molecular mechanisms concerning psoriasis remain largely unexplored. AIM OF THE STUDY To elucidate the underlying mechanisms of the action of SCF on psoriasis. MATERIALS AND METHODS Active ingredients were identified by LC-MS/MS. After the treatment with SCF, the exploration of differentially expressed proteins (DEPs) were conducted using tandem mass tag (TMT)-based quantitative proteomics analysis. By GO/KEGG, WikiPathways and network pharmacology, core signaling pathway and protein targets were explored. Consequently, major signaling pathway and protein targets were validated by RT-qPCR, immunoblotting and immunofluorescence. Based on Lipinski's Rule of Five rules and molecular docking, 8 active compounds were identified that acted on the core targets. RESULTS 41 compounds of SCF and 848 specific targets of these compounds were identified. There were 570 DEPs between IMQ (Imiquimod) and IMQ + SCF group, including 279 up-regulated and 304 down-regulated proteins. GO/KEGG, WikiPathways and network pharmacology revealed estrogen signaling pathway as the paramount pathways, through which SCF functioned on psoriasis. We further show novel ingredients formula of SCF contributes to estrogen signaling intervention, including liquiritin, parvisoflavone B, glycycoumarin, 8-prenylluteone, licochalcone A, licochalcone B, oxymatrine, and 13-Hydroxylupanine, where targeting MAP2K1, ILK, HDAC1 and PRKACA, respectively. Molecular docking proves that they have good binding properties. CONCLUSION Our results provide an in-depth view of psoriasis pathogenesis and herbal intervention, which expands our understanding of the systemic pharmacology to reveal the multiple ingredients and multiple targets of SCF and focus on one pathway (estrogen signaling pathway) may be a novel therapeutic strategy for psoriasis treatment of herbal medicine.
Collapse
Affiliation(s)
- Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Caiyun Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Changya Liu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
2
|
Yang J, Wei X, Tufan T, Kuscu C, Unlu H, Farooq S, Demirtas E, Paschal BM, Adli M. Recurrent mutations at estrogen receptor binding sites alter chromatin topology and distal gene expression in breast cancer. Genome Biol 2018; 19:190. [PMID: 30404658 PMCID: PMC6223090 DOI: 10.1186/s13059-018-1572-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/22/2018] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The mutational processes underlying non-coding cancer mutations and their biological significance in tumor evolution are poorly understood. To get better insights into the biological mechanisms of mutational processes in breast cancer, we integrate whole-genome level somatic mutations from breast cancer patients with chromatin states and transcription factor binding events. RESULTS We discover that a large fraction of non-coding somatic mutations in estrogen receptor (ER)-positive breast cancers are confined to ER binding sites. Notably, the highly mutated estrogen receptor binding sites are associated with more frequent chromatin loop contacts and the associated distal genes are expressed at higher level. To elucidate the functional significance of these non-coding mutations, we focus on two of the recurrently mutated estrogen receptor binding sites. Our bioinformatics and biochemical analysis suggest loss of DNA-protein interactions due to the recurrent mutations. Through CRISPR interference, we find that the recurrently mutated regulatory element at the LRRC3C-GSDMA locus impacts the expression of multiple distal genes. Using a CRISPR base editor, we show that the recurrent C→T conversion at the ZNF143 locus results in decreased TF binding, increased chromatin loop formation, and increased expression of multiple distal genes. This single point mutation mediates reduced response to estradiol-induced cell proliferation but increased resistance to tamoxifen-induced growth inhibition. CONCLUSIONS Our data suggest that ER binding is associated with localized accumulation of somatic mutations, some of which affect chromatin architecture, distal gene expression, and cellular phenotypes in ER-positive breast cancer.
Collapse
Affiliation(s)
- Jiekun Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
| | - Xiaolong Wei
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
| | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
| | - Cem Kuscu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
| | - Hayrunnisa Unlu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
| | - Saadia Farooq
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
| | - Elif Demirtas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
| | - Bryce M Paschal
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA
- Center for Cell Signalling, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Pinn Hall, Room: 6228, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|
4
|
Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients. PLoS One 2016; 11:e0165582. [PMID: 27902785 PMCID: PMC5130187 DOI: 10.1371/journal.pone.0165582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/16/2016] [Indexed: 11/19/2022] Open
Abstract
Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially elucidated which genes are involved in this process and which hematopoietic cells are mainly affected. We employed sensitive real-time PCR technology to study 93 apoptosis-related genes and gene families in sorted immature CD34+ and the differentiating erythroid (CD71+) and monomyeloid (CD13/33+) bone marrow cells. Unsupervised cluster analysis of the expression signature readily distinguished the different cellular bone marrow fractions (CD34+, CD71+ and CD13/33+) from each other, but did not discriminate patients from healthy controls. When individual genes were regarded, several were found to be differentially expressed between patients and controls. Particularly, strong over-expression of BIK (BCL2-interacting killer) was observed in erythroid progenitor cells of low- and high-risk MDS patients (both p = 0.001) and TNFRSF4 (tumor necrosis factor receptor superfamily 4) was down-regulated in immature hematopoietic cells (p = 0.0023) of low-risk MDS patients compared to healthy bone marrow.
Collapse
|