1
|
Cook E, Van de Vijver K, Parra-Herran C. Diagnosis of verruciform acanthotic vulvar intra-epithelial neoplasia (vaVIN) using CK17, SOX2 and GATA3 immunohistochemistry. Histopathology 2024; 84:1212-1223. [PMID: 38356340 DOI: 10.1111/his.15156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
AIMS Verruciform acanthotic vulvar intra-epithelial neoplasia (vaVIN) is an HPV-independent, p53 wild-type lesion with distinct morphology and documented risk of recurrence and cancer progression. vaVIN is rare, and prospective distinction from non-neoplastic hyperplastic lesions can be difficult. CK17, SOX2 and GATA3 immunohistochemistry has emerging value in the diagnosis of HPV-independent lesions, particularly differentiated VIN. We aimed to test the combined value of these markers in the diagnosis of vaVIN versus its non-neoplastic differentials in the vulva. METHODS AND RESULTS CK17, SOX2 and GATA3 immunohistochemistry was evaluated on 16 vaVINs and 34 mimickers (verruciform xanthoma, lichen simplex chronicus, lichen sclerosus, psoriasis, pseudo-epitheliomatous hyperplasia). CK17 was scored as 3+ = full-thickness, 2+ = partial-thickness, 1+ = patchy, 0 = absent; SOX2 as 3+ = strong staining ≥ 10% cells, 2+ = moderate, 1 + =weak, 0 = staining in < 10% cells; and GATA3 as pattern 0 = loss in < 25% basal cells, 1 = loss in 25-75% basal cells, 2 = loss in > 75% basal cells. For analysis, results were recorded as positive (CK17 = 3+, SOX2 = 3+, GATA3 = patterns 1/2) or negative (CK17 = 2+/1+/0, SOX2 = 2+/1+/0, GATA3 = pattern 0). CK17, SOX2 and GATA3 positivity was documented in 81, 75 and 58% vaVINs, respectively, versus 32, 17 and 22% of non-neoplastic mimickers, respectively; ≥ 2 marker positivity conferred 83 sensitivity, 88 specificity and 86% accuracy in vaVIN diagnosis. Compared to vaVIN, SOX2 and GATA3 were differentially expressed in lichen sclerosus, lichen simplex chronicus and pseudo-epitheliomatous hyperplasia, whereas CK17 was differentially expressed in verruciform xanthoma and adjacent normal mucosa. CONCLUSIONS CK17, SOX2 and GATA3 can be useful in the diagnosis of vaVIN and its distinction from hyperplastic non-neoplastic vulvar lesions. Although CK17 has higher sensitivity, SOX2 and GATA3 are more specific, and the combination of all markers shows optimal diagnostic accuracy.
Collapse
Affiliation(s)
- Eleanor Cook
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
2
|
Fudulu A, Diaconu CC, Iancu IV, Plesa A, Albulescu A, Bostan M, Socolov DG, Stoian IL, Balan R, Anton G, Botezatu A. Exploring the Role of E6 and E7 Oncoproteins in Cervical Oncogenesis through MBD2/3-NuRD Complex Chromatin Remodeling. Genes (Basel) 2024; 15:560. [PMID: 38790189 PMCID: PMC11121560 DOI: 10.3390/genes15050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cervical cancer is among the highest-ranking types of cancer worldwide, with human papillomavirus (HPV) as the agent driving the malignant process. One aspect of the infection's evolution is given by epigenetic modifications, mainly DNA methylation and chromatin alteration. These processes are guided by several chromatin remodeling complexes, including NuRD. The purpose of this study was to evaluate the genome-wide binding patterns of the NuRD complex components (MBD2 and MBD3) in the presence of active HPV16 E6 and E7 oncogenes and to determine the potential of identified genes through an experimental model to differentiate between cervical precursor lesions, with the aim of establishing their utility as biomarkers. METHODS The experimental model was built using the CaSki cell line and shRNA for E6 and E7 HPV16 silencing, ChIP-seq, qRT-PCR, and Western blot analyses. Selected genes' expression was also assessed in patients. RESULTS Several genes have been identified to exhibit altered transcriptional activity due to the influence of HPV16 E6/E7 viral oncogenes acting through the MBD2/MBD3 NuRD complex, linking them to viral infection and cervical oncogenesis. CONCLUSIONS The impacted genes primarily play roles in governing gene transcription, mRNA processing, and regulation of translation. Understanding these mechanisms offers valuable insights into the process of HPV-induced oncogenesis.
Collapse
Affiliation(s)
- Alina Fudulu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
| | - Iulia Virginia Iancu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
| | - Adriana Plesa
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
| | - Adrian Albulescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
- Pharmacology Department, National Institute for Chemical Pharmaceutical Research and Development, 031299 Bucharest, Romania
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
| | - Demetra Gabriela Socolov
- Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.G.S.); (I.L.S.); (R.B.)
| | - Irina Liviana Stoian
- Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.G.S.); (I.L.S.); (R.B.)
| | - Raluca Balan
- Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.G.S.); (I.L.S.); (R.B.)
| | - Gabriela Anton
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
| | - Anca Botezatu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.F.); (I.V.I.); (A.P.); (A.A.); (M.B.); (G.A.); (A.B.)
| |
Collapse
|
3
|
Du R, Xiong S. Hsa_circ_0084912 Drives the Progression of Cervical Cancer Via Regulating miR-429/SOX2 Pathway. Mol Biotechnol 2023; 65:2018-2029. [PMID: 36913084 DOI: 10.1007/s12033-023-00701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
We focus on hsa_circ_0084912's role in Cervical cancer (CC) and its molecular pathways. In order to determine the expression of Hsa_circ_0084912, miR-429, and SOX2 in CC tissues and cells, Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were utilized. Cell counting kit 8 (CCK-8), colony formation and Transwell assays were respectively to analyze CC cell proliferation viability, clone formation ability and migration. RNA immunoprecipitation (RIP) assay and dual-luciferase assay were used to assure the targeting correlation among hsa_circ_0084912/SOX2 and miR-429. By using a xenograft tumor model, the hsa_circ_0084912 impact on CC cell proliferation in vivo was confirmed. Hsa_circ_0084912 and SOX2 expressions were aggrandized, however, miR-429 expression was descended in CC tissues and cells. Silencing hsa_circ_0084912 inhibited cell proliferation, colony formation and migration in vitro of CC, meanwhile reducing growth of tumor in vivo. MiR-429 might be sponged by Hsa_circ_0084912 to control SOX2 expression. Hsa_circ_0084912 knockdown impact on the malignant phenotypes of CC cells was restored by miR-429 inhibitor. Moreover, SOX2 silencing eliminated the promotive effects of miR-429 inhibitors on CC cell malignancies. By raising SOX2 expression by targeting miR-429, hsa_circ_0084912 accelerated the development of CC, offering fresh proof that it is a viable target for CC treatment.
Collapse
Affiliation(s)
- Rong Du
- Department of Gynecology, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Shiyi Xiong
- Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Jianghan District, No. 11, Lingjiaohu Road, Wuhan, 430040, Hubei, China.
| |
Collapse
|
4
|
In focus in HCB. Histochem Cell Biol 2022; 158:513-516. [PMID: 36441251 DOI: 10.1007/s00418-022-02167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
SOX2 expression in the pathogenesis of premalignant lesions of the uterine cervix: its histo-topographical distribution distinguishes between low- and high-grade CIN. Histochem Cell Biol 2022; 158:545-559. [PMID: 35945296 PMCID: PMC9726813 DOI: 10.1007/s00418-022-02145-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
SOX2 expression in high-grade cervical intraepithelial neoplasia (CIN3) and cervical squamous cell carcinoma is increased compared to that in the normal cervical epithelium. However, data on the expression and histological distribution of SOX2 in squamous epithelium during progression of CIN are largely lacking. We studied SOX2 expression throughout the epithelium in 53 cases of CIN1, 2, and 3. In general, SOX2 expression increased and expanded from basal/parabasal to the intermediate/superficial compartment during early stages of progression of CIN. An unexpected, specific expression pattern was found in areas classified as CIN2 and CIN3. This pattern was characterized by the absence or low expression of SOX2 in the basal/parabasal compartment and variable levels in the intermediate and superficial compartments. It was significantly associated with CIN3 (p = 0.009), not found in CIN1 and only seen in part of the CIN2 lesions. When the different patterns were correlated with the genetic make-up and presence of HPV, the CIN3-related pattern contained HPV-positive cells in the basal/parabasal cell compartment that were disomic. This is in contrast to the areas exhibiting the CIN1 and CIN2 related patterns, which frequently exhibited aneusomic cells. Based on their SOX2 localisation pattern, CIN1 and CIN2 could be delineated from CIN3. These data shed new light on the pathogenesis and dynamics of progression in premalignant cervical lesions, as well as on the target cells in the epithelium for HPV infection.
Collapse
|
6
|
Yuan D, Wang J, Yan M, Xu Y. SOX2 as a prognostic marker and a potential molecular target in cervical cancer: A meta-analysis. Int J Biol Markers 2021; 36:45-53. [PMID: 34719977 DOI: 10.1177/17246008211042899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sex determining region Y-box 2 (SOX2) has been reported as a potential therapeutic target for cancer. However, the role of SOX2 in cervical cancer remains largely undetermined. This study was performed to evaluate the correlation of SOX2 with clinical characteristics and prognosis in cervical cancer. METHODS Multiple databases were systematically searched for eligible publications. The combined odds ratios (ORs) or hazard ratios (HRs) with the corresponding 95% confidence intervals (CIs) were used to assess the effect sizes. RESULTS A total of 17 studies with 1906 participants were identified. SOX2 expression was higher in cervical cancer than in the normal control group (OR = 10.83, 95% CI = 6.64-17.67, P < 0.001), while no significant difference was observed between cervical cancer and cervical intraepithelial neoplasia. SOX2 expression was not associated with age, tumor stage, and lymph node metastasis, but was correlated with tumor grade (grade 2-3 vs. grade 1: OR = 4.59, 95% CI = 2.76-7.62, P < 0.001) and tumor size (≥4 cm vs. ≤4 cm: OR = 1.66, 95% CI = 1.05-2.60, P = 0.028). Based on multivariate Cox analysis, SOX2 expression was not correlated with overall survival, but was closely associated with poor recurrence-free survival (HR = 5.83, 95% CI = 1.35-25.16, P = 0.018) and progress-free survival HR = 2.29, 95% CI = 1.01-5.19, P = 0.046). CONCLUSION SOX2 may serve as a novel prognostic factor and a promising molecular target for cervical cancer.
Collapse
Affiliation(s)
- Dandan Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Jian Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Mingyu Yan
- Inner Mongolia Medical College Third Affiliated Hospital, Baotou, PR China
| | - Yaohui Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, PR China
| |
Collapse
|
7
|
Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Zabolian A, Hashemi M, Hushmandi K, Ashrafizadeh M, Aref AR, Samarghandian S. Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies. Biomed Pharmacother 2021; 144:112335. [PMID: 34700233 DOI: 10.1016/j.biopha.2021.112335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth common gynecologic cancer and is considered as second leading cause of death among women. Various strategies are applied in treatment of cervical cancer including radiotherapy, chemotherapy and surgery. However, cervical cancer cells demonstrate aggressive behavior in advanced phases, requiring novel strategies in their elimination. On the other hand, SOX proteins are transcription factors capable of regulating different molecular pathways and their expression varies during embryogenesis, disease development and carcinogenesis. In the present review, our aim is to reveal role of SOX transcription factors in cervical cancer. SOX transcription factors play like a double-edged sword in cancer. For instance, SOX9 possesses both tumor-suppressor and tumor-promoting role in cervical cancer. Therefore, exact role of each SOX members in cervical cancer has been discussed to direct further experiments for revealing other functions. SOX proteins can regulate proliferation and metastasis of cervical cancer cells. Furthermore, response of cervical cancer cells to chemotherapy and radiotherapy is tightly regulated by SOX transcription factors. Different downstream targets of SOX proteins such as Wnt signaling, EMT and Hedgehog have been identified. Besides, upstream mediators such as microRNAs, lncRNAs and circRNAs can regulate SOX expression in cervical cancer. In addition to pre-clinical studies, role of SOX transcription factors as prognostic and diagnostic tools in cervical cancer has been shown.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Dasgupta S, Koljenović S, van den Bosch TPP, Swagemakers SMA, van der Hoeven NMA, van Marion R, van der Spek PJ, van Doorn HC, van Kemenade FJ, Ewing-Graham PC. Evaluation of Immunohistochemical Markers, CK17 and SOX2, as Adjuncts to p53 for the Diagnosis of Differentiated Vulvar Intraepithelial Neoplasia (dVIN). Pharmaceuticals (Basel) 2021; 14:ph14040324. [PMID: 33918187 PMCID: PMC8066509 DOI: 10.3390/ph14040324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
Histological diagnosis of differentiated vulvar intraepithelial neoplasia (dVIN), the precursor of human papillomavirus (HPV)-independent vulvar squamous cell carcinoma (VSCC), can be challenging, as features of dVIN may mimic those of non-dysplastic dermatoses. To aid the diagnosis, p53-immunohistochemistry (IHC) is commonly used, and mutant expression patterns are used to support a histological diagnosis of dVIN. However, a proportion of dVIN can show wild-type p53-expression, which is characteristic of non-dysplastic dermatoses. Furthermore, recent research has identified a novel precursor of HPV-independent VSCC—the p53-wild-type differentiated exophytic vulvar intraepithelial lesion (de-VIL). Currently, there are no established diagnostic IHC-markers for p53-wild-type dVIN or de-VIL. We evaluated IHC-markers, cytokeratin 17 (CK17), and SRY-box 2 (SOX2), as diagnostic adjuncts for dVIN. For this, IHC-expression of CK17, SOX2, and p53 was studied in dVIN (n = 56), de-VIL (n = 8), and non-dysplastic vulvar tissues (n = 46). For CK17 and SOX2, the percentage of cells showing expression, and the intensity and distribution of expression were recorded. We also performed next generation targeted sequencing (NGTS) on a subset of dVIN (n = 8) and de-VIL (n = 8). With p53-IHC, 74% of dVIN showed mutant patterns and 26% showed wild-type expression. Median percentage of cells expressing CK17 or SOX2 was significantly higher in dVIN (p53-mutant or p53-wild-type) and de-VIL than in non-dysplastic tissues (p < 0.01). Diffuse, moderate-to-strong, full epithelial expression of CK17 or SOX2 was highly specific for dVIN and de-VIL. With NGTS, TP53 mutations were detected in both dVIN and de-VIL. We infer that immunohistochemical markers CK17 and SOX2, when used along with p53, may help support the histological diagnosis of dVIN.
Collapse
Affiliation(s)
- Shatavisha Dasgupta
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
- Correspondence:
| | - Senada Koljenović
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
| | - Sigrid M. A. Swagemakers
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
- Department of Clinical Bioinformatics, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Nick M. A. van der Hoeven
- Department of Gynecology and Obstetrics, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Ronald van Marion
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
| | - Peter J. van der Spek
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
- Department of Clinical Bioinformatics, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Helena C. van Doorn
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Folkert J. van Kemenade
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
| | - Patricia C. Ewing-Graham
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.K.); (T.P.P.v.d.B.); (S.M.A.S.); (R.v.M.); (P.J.v.d.S.); (F.J.v.K.); (P.C.E.-G.)
| |
Collapse
|
9
|
Zhang SW, Luo RZ, Sun XY, Yang X, Yang HX, Xiong SP, Liu LL. Co-expression of SOX2 and HR-HPV RISH predicts poor prognosis in small cell neuroendocrine carcinoma of the uterine cervix. BMC Cancer 2021; 21:332. [PMID: 33789601 PMCID: PMC8011148 DOI: 10.1186/s12885-021-08059-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Small cell neuroendocrine carcinoma of the uterine cervix (SCNEC) is a rare cancer involving the human papilloma virus (HPV), and has few available treatments. The present work aimed to assess the feasibility of SOX2 and HPV statuses as predictive indicators of SCNEC prognosis. METHODS The associations of SOX2 and/or high-risk (HR)-HPV RNA in situ hybridization (RISH) levels with clinicopathological characteristics and prognostic outcomes for 88 neuroendocrine carcinoma (NEC) cases were analyzed. RESULTS Among these patients with SCNEC, SOX2, P16INK4A and HR-HPV RISH expression and SOX2/HR-HPV RISH co-expression were detected in 68(77.3%), 76(86.4%), 73(83.0%), and 48(54.5%), respectively. SOX2-positive and HR-HPV RISH-positive SCNEC cases were associated with poorer overall survival (OS, P = 0.0170, P = 0.0451) and disease-free survival (DFS, P = 0.0334, P = 0.0309) compared with those expressing low SOX2 and negative HR-HPV RISH. Alternatively, univariate analysis revealed that SOX2 and HR-HPV RISH expression, either separately or in combination, predicted the poor prognosis of SCNEC patients. Multivariate analysis revealed that the co-expression of SOX2 with HR-HPV RISH may be an independent factor of OS [hazard ratio = 3.597; 95% confidence interval (CI): 1.085-11.928; P = 0.036] and DFS [hazard ratio = 2.880; 95% CI: 1.199-6.919; P = 0.018] prediction in SCNEC. CONCLUSIONS Overall, the results of the present study suggest that the co-expression of SOX2 with HR-HPV RISH in SCNEC may represent a specific subgroup exhibiting remarkably poorer prognostic outcomes compared with the expression of any one marker alone.
Collapse
Affiliation(s)
- Shi-Wen Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 51800, China
| | - Rong-Zhen Luo
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Ying Sun
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xia Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hai-Xia Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Si-Ping Xiong
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Li Liu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Zhang L, Guo C, Ji T, Chen X. SOX2 Regulates lncRNA CCAT1/MicroRNA-185-3p/FOXP3 Axis to Affect the Proliferation and Self-Renewal of Cervical Cancer Stem Cells. NANOSCALE RESEARCH LETTERS 2021; 16:2. [PMID: 33394184 PMCID: PMC7782617 DOI: 10.1186/s11671-020-03449-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
It has been presented the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). We aim to discuss the effect of sex-determining region Y-box 2 (SOX2)/lncRNA colon cancer-associated transcript-1 (CCAT1)/microRNA-185-3p (miR-185-3p)/forkhead box protein 3 (FOXP3) on the proliferation and self-renewal ability of CC stem cells. MiR-185-3p, SOX2, CCAT1 and FOXP3 expressions were tested in CC tissues and cells. The relationship between SOX2/CCAT1 expression and clinicopathological features in CC patients was verified. Loss- and gain-of-function investigations were conducted in CD44+HeLa cells to discuss biological functions and self-renewal capacity. Finally, the relationships among SOX2, CCAT1, FOXP3 and miR-185-3p were verified. miR-185-3p expression was decreased, while SOX2, CCAT1 and FOXP3 expressions were increased in CC tissues and cells. SOX2 and CCAT1 expressions were linked to tumor size, lymph node metastasis and international federation of gynecology and obstetrics stage of CC. Down-regulating SOX2 or CCAT1 and up-regulating miR-185-3p resulted in inhibition of proliferation, invasion, migration and cell sphere number as well as apoptosis acceleration of CD44+HeLa cells. SOX2 could bind to CCAT1 which affected miR-185-3p expression, and FOXP3 was targeted by miR-185-3p.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China
| | - Tiefeng Ji
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China
| | - Xin Chen
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
11
|
Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, Moghadam ER, Raei M, Zarrabi A, Khan H, Najafi M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol Res 2020; 161:105159. [PMID: 32818654 DOI: 10.1016/j.phrs.2020.105159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors are potential targets in disease therapy, particularly in cancer. This is due to the fact that transcription factors regulate a variety of cellular events, and their modulation has opened a new window in cancer therapy. Sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are potential transcription factors that are involved in developmental processes such as embryogenesis. It has been reported that abnormal expression of SOX proteins is associated with development of different cancers, particularly ovarian cancer (OC). In the present review, our aim is to provide a mechanistic review of involvement of SOX members in OC. SOX members may suppress and/or promote aggressiveness and proliferation of OC cells. Clinical studies have also confirmed the potential of transcription factors as diagnostic and prognostic factors in OC. Notably, studies have demonstrated the relationship between SOX members and other molecular pathways such as ST6Ga1-I, PI3K, ERK and so on, leading to more complexity. Furthermore, SOX members can be affected by upstream mediators such as microRNAs, long non-coding RNAs, and so on. It is worth mentioning that the expression of each member of SOX proteins is corelated with different stages of OC. Furthermore, their expression determines the response of OC cells to chemotherapy. These topics are discussed in this review to shed some light on role of SOX transcription factors in OC.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Moshi JM, Hoogduin KJ, Ummelen M, Henfling MER, van Engeland M, Wouters KAD, Stoop H, Demers I, Looijenga LHJ, Ramaekers FCS, Hopman ANH. Switches of SOX17 and SOX2 expression in the development of squamous metaplasia and squamous intraepithelial lesions of the uterine cervix. Cancer Med 2020; 9:6330-6343. [PMID: 32644288 PMCID: PMC7476841 DOI: 10.1002/cam4.3201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS The dynamics and topographical distribution of SOX17 and SOX2 expression was studied in the transformation zone (TZ) of the uterine cervix. This TZ is a dynamic area where switches from glandular into squamous epithelium can be recognized, new squamocolumnar junctions are formed, and premalignant lesions originate. SOX17 and SOX2 show mutually exclusive expression patterns in the normal uterine cervix, with SOX2 being exclusively found in squamous epithelium, while SOX17 is detected in endocervical columnar cells and reserve cells. METHODS AND RESULTS Normal cervices and squamous intraepithelial lesions (SIL) were studied with immunohistochemistry, methylation of SOX17, human papilloma virus (HPV) genotyping, and in situ hybridization. In the TZ squamous metaplasia originating from these reserve cells can still show SOX17 expression, while also remnants of SOX17-positive immature metaplasia can be recognized in the normal squamous epithelium. SOX17 expression is gradually lost during maturation, resulting in the exclusive expression of SOX2 in the majority of (SIL). This loss of SOX17 expression is independent of methylation of the CpG island in its promotor region. HPV can be detected in SOX17-positive immature metaplastic regions in the immediate vicinity of SOX2-positive SIL, suggesting that switches in SOX17 and 2 expression can occur upon HPV infection. CONCLUSIONS This switch in expression, and the strong association between the distribution of reserve cells and squamous areas within the columnar epithelium in the TZ, suggests that reserve cell proliferations, next to basal cells in the squamous epithelium, are potential targets for the formation of squamous lesions upon viral infection.
Collapse
Affiliation(s)
- Jobran M Moshi
- Department of Molecular Cell Biology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Klaas J Hoogduin
- Laboratory of Pathology, Pathan B.V., Rotterdam, The Netherlands
| | - Monique Ummelen
- Department of Molecular Cell Biology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mieke E R Henfling
- Department of Molecular Cell Biology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kim A D Wouters
- Department of Pathology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hans Stoop
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Imke Demers
- Department of Molecular Cell Biology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leendert H J Looijenga
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Frans C S Ramaekers
- Department of Molecular Cell Biology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anton N H Hopman
- Department of Molecular Cell Biology, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
13
|
Chang X, Zhang H, Yang Q, Pang L. LncRNA SOX2OT affects cervical cancer cell growth, migration and invasion by regulating SOX2. Cell Cycle 2020; 19:1391-1403. [PMID: 32286144 DOI: 10.1080/15384101.2020.1750812] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNA (lncRNA) SOX2 overlapping transcript (SOX2OT) has been shown to play an oncogenic role in diverse cancers, generating eight transcript variants. SOX2 is located in the third intron of SOX2OT. However, the biological function of SOX2OT in cervical cancer and implication with SOX2 remain to be further explored. In this study, we screened the expression pattern of different SOX2OT transcript variants in cervical cancer cells. Interestingly, both high-expression levels of SOX2OT transcript 7 (SOX2OT-7) and SOX2 were detected in C-33A (HPV-) and SiHa (HPV16+) cells. Thus, C-33A and SiHa cells were conducted to investigate the effects of SOX2OT on cell growth, migration and invasion. Finally, rescue experiments were performed to confirm the role of SOX2 in SOX2OT-mediated regulation of cervical cancer progression. The results showed that knockdown of SOX2OT suppressed cell viability, arrested cell cycle and ameliorated migration and invasion ability of C-33A and SiHa cells. Ectopic expression of SOX2OT-7 exacerbated cervical cancer cell proliferation, migration and invasion. In addition, we found that the expression levels and protein stability of SOX2 were positively regulated by SOX2OT. Inhibition of SOX2 could block the malignant phenotypes of C-33A and SiHa cells by SOX2OT-7. In conclusion, these findings indicate that lncRNA SOX2OT contributes to the growth, migration and invasion of cervical cancer cells by modulating SOX2. Importantly, we demonstrate that the transcript SOX2OT-7 may be a novel and promising biomarker for both HPV- and HPV16+ cervical cancer.
Collapse
Affiliation(s)
- Xiaohan Chang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Huijie Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Li Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
14
|
Hua X, Huang M, Deng X, Xu J, Luo Y, Xie Q, Xu J, Tian Z, Li J, Zhu J, Huang C, Zhao QS, Huang H, Huang C. The inhibitory effect of compound ChlA-F on human bladder cancer cell invasion can be attributed to its blockage of SOX2 protein. Cell Death Differ 2020; 27:632-645. [PMID: 31243344 PMCID: PMC7205984 DOI: 10.1038/s41418-019-0377-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Sex-determining region Y-box 2 (SOX2), a well-known stemness biomarker, is highly expressed in a variety of cancers, including human highly invasive bladder cancer (BC). However, the role of SOX2 may vary in different kinds of malignancy. In the present study, we discovered that ChlA-F, a novel conformation derivative of isolate Cheliensisin A (Chel A), remarkably inhibits the invasive ability of human invasive BC cells through downregulation of SOX2 protein expression. We found that ChlA-F treatment dramatically decreases SOX2 protein expression in human high-grade invasive BC cells. Ectopic expression of SOX2 reversed ChlA-F inhibition of cell invasion ability in human bladder cancer cells, suggesting that SOX2 is a major target of ChlA-F during its inhibition of human BC invasion. Mechanistic studies revealed that ChlA-F downregulates SOX2 at both the protein degradation and protein translation levels. Further studies revealed that ChlA-F treatment induces HuR protein expression and that the increased HuR interacts with USP8 mRNA, resulting in elevation of USP8 mRNA stability and protein expression. Elevated USP8 subsequently acts as an E3 ligase to promote SOX2 ubiquitination and protein degradation. We also found that ChlA-F treatment substantially increases c-Jun phosphorylation at Ser63 and Ser73, initiating miR-200c transcription. The increased miR-200c directly binds to the 3'-UTR of SOX2 mRNA to suppress SOX2 protein translation. These results present novel mechanistic insight into understanding SOX2 inhibition upon ChlA-F treatment and provide important information for further exploration of ChlA-F as a new therapeutic compound for the treatment of highly invasive/metastatic human BC patients.
Collapse
Affiliation(s)
- Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maowen Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204, Kunming, China
| | - Jiheng Xu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Yisi Luo
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Xu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Zhongxian Tian
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204, Kunming, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
15
|
Wang R, Li Y, Du P, Zhang X, Li X, Cheng G. Hypomethylation of the lncRNA SOX21-AS1 has clinical prognostic value in cervical cancer. Life Sci 2019; 233:116708. [DOI: 10.1016/j.lfs.2019.116708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022]
|
16
|
Gong B, Yue Y, Wang R, Zhang Y, Jin Q, Zhou X. Overexpression of microRNA-194 suppresses the epithelial–mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol 2017; 39:1010428317706217. [PMID: 28618953 DOI: 10.1177/1010428317706217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Baolan Gong
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Yue
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Renxiao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Quanfang Jin
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xi Zhou
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
17
|
Xu YR, Yang WX. SOX-mediated molecular crosstalk during the progression of tumorigenesis. Semin Cell Dev Biol 2016; 63:23-34. [PMID: 27476113 DOI: 10.1016/j.semcdb.2016.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/27/2016] [Indexed: 01/30/2023]
Abstract
SOX family transcription factor has emerged as a double-edged sword relating to tumorigenesis and metastasis. Multiple studies have revealed different expression patterns and contradictory roles of SOX factors in the tumor initiation and progression. The aberrant expression of SOX factors is regulated by copy number alteration, methylation modulation, microRNAs, transcription factors and post-translational modification. This review summarizes the role of SOX factors in molecular interactions and signaling pathways during different steps of carcinogenesis, such as CSCs stemness maintenance, EMT occurrence, cell invasion, cell proliferation and apoptosis. The Wnt signaling pathway is also shown to provide vital intermediate signaling transduction. We believe that SOX family proteins may be used as prognostic markers for human clinical therapy, and novel therapy strategies targeting SOX factors should be explored in future clinical applications.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
18
|
Kim BW, Cho H, Choi CH, Ylaya K, Chung JY, Kim JH, Hewitt SM. Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMC Cancer 2015; 15:1015. [PMID: 26706028 PMCID: PMC4691290 DOI: 10.1186/s12885-015-2015-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023] Open
Abstract
Background Cancer stem cell markers have become a major research focus because of their relationship with radiation or chemotherapy resistance in cancer therapy. Cancer stem cell markers including OCT4 and SOX2 have been found in various solid tumors. Here, we investigate the expression and clinical significance of OCT4 and SOX2 in cervical cancer. Methods To define the clinical significance of OCT4 and SOX2 expression, we performed immunohistochemistry for OCT4 and SOX2 on 305 normal cervical epithelium samples, 289 cervical intraepithelial neoplasia samples, and 161 cervical cancer cases and compared the data with clinicopathologic factors, including survival rates of patients with cervical cancer. Results OCT4 and SOX2 expression was higher in cervical cancer than normal cervix (both p < 0.001). OCT4 overexpression was associated with lymphovascular space invasion (p = 0.045), whereas loss of SOX2 expression was correlated with large tumor size (p = 0.015). Notably, OCT4 and SOX2 were significantly co-expressed in premalignant cervical lesions, but not in malignant cervical tumor. OCT4 overexpression showed worse 5-year disease-free and overall survival rates (p = 0.012 and p = 0.021, respectively) when compared to the low-expression group, while SOX2 expression showed favorable overall survival (p = 0.025). Cox regression analysis showed that OCT4 was an independent risk factor (hazard ratio = 11.23, 95 % CI, 1.31 - 95.6; p = 0.027) for overall survival while SOX2 overexpression showed low hazard ratio for death (hazard ratio = 0.220, 95 % CI, 0.06–0.72; p = 0.013). Conclusions These results suggest that OCT4 overexpression and loss of SOX2 expression are strongly associated with poor prognosis in patients with cervical cancer.
Collapse
Affiliation(s)
- Bo Wook Kim
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA. .,Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University, Seoul, 135-701, South Korea.
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 146-92 Dogok-Dong, Gangnam-Gu, Seoul, 135-720, South Korea.
| | - Chel Hun Choi
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA. .,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea.
| | - Kris Ylaya
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| | - Joon-Yong Chung
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 146-92 Dogok-Dong, Gangnam-Gu, Seoul, 135-720, South Korea.
| | - Stephen M Hewitt
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| |
Collapse
|