1
|
Xu M, Wu S, Wang Y, Zhao Y, Wang X, Wei C, Liu X, Hao F, Hu C. Association between high-dose methotrexate-induced toxicity and polymorphisms within methotrexate pathway genes in acute lymphoblastic leukemia. Front Pharmacol 2022; 13:1003812. [PMID: 36532750 PMCID: PMC9748425 DOI: 10.3389/fphar.2022.1003812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/21/2022] [Indexed: 09/22/2023] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist, the mechanism of action is to inhibit DNA synthesis, repair and cell proliferation by decreasing the activities of several folate-dependent enzymes. It is widely used as a chemotherapy drug for children and adults with malignant tumors. High-dose methotrexate (HD-MTX) is an effective treatment for extramedullary infiltration and systemic consolidation in children with acute lymphoblastic leukemia (ALL). However, significant toxicity results in most patients treated with HD-MTX, which limits its use. HD-MTX-induced toxicity is heterogeneous, and this heterogeneity may be related to gene polymorphisms in related enzymes of the MTX intracellular metabolic pathway. To gain a deeper understanding of the differences in toxicity induced by HD-MTX in individuals, the present review examines the correlation between HD-MTX-induced toxicity and the gene polymorphisms of related enzymes in the MTX metabolic pathway in ALL. In this review, we conclude that only the association of SLCO1B1 and ARID5B gene polymorphisms with plasma levels of MTX and MTX-related toxicity is clearly described. These results suggest that SLCO1B1 and ARID5B gene polymorphisms should be evaluated before HD-MTX treatment. In addition, considering factors such as age and race, the other exact predictor of MTX induced toxicity in ALL needs to be further determined.
Collapse
Affiliation(s)
- Meng Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yundong Zhao
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Ximin Wang
- Jilin Drug Inspection Center, Changchun, China
| | - Changhong Wei
- Department of Hematology, The Linyi Central Hospital, Linyi, China
| | - Xueying Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Feng Hao
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
2
|
Lodhi N, Singh R, Rajput SP, Saquib Q. SARS-CoV-2: Understanding the Transcriptional Regulation of ACE2 and TMPRSS2 and the Role of Single Nucleotide Polymorphism (SNP) at Codon 72 of p53 in the Innate Immune Response against Virus Infection. Int J Mol Sci 2021; 22:8660. [PMID: 34445373 PMCID: PMC8395432 DOI: 10.3390/ijms22168660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Human ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway. TMPRSS2, including IFNβ, STAT1, and STAT2, has the PARP1 binding site near to TSS either up or downstream promoter region. It is well documented that PARP1 regulates gene expression at the transcription level. Therefore, to curb virus infection, both promoting type I IFN signaling to boost innate immunity and prevention of virus entry by inhibiting PARP1, ACE2 or TMPRSS2 are safe options. Most importantly, our aim is to attract the attention of the global scientific community towards the codon 72 Single Nucleotide Polymorphism (SNP) of p53 and its underneath role in the innate immune response against SARS-CoV-2. Here, we discuss codon 72 SNP of human p53's role in the different innate immune response to restrict virus-mediated mortality rate only in specific parts of the world. In addition, we discuss potential targets and emerging therapies using bioengineered bacteriophage, anti-sense, or CRISPR strategies.
Collapse
Affiliation(s)
- Niraj Lodhi
- Clinical Research (Research and Development Division) miRNA Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rubi Singh
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA;
| | | | - Quaiser Saquib
- Department of Zoology, College of Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
3
|
Chen M, Chen W, Liu P, Yan K, Lv C, Zhang M, Lu Y, Qin Q, Kuang Y, Zhu W, Chen X. The impacts of gene polymorphisms on methotrexate in Chinese psoriatic patients. J Eur Acad Dermatol Venereol 2020; 34:2059-2065. [PMID: 32271961 DOI: 10.1111/jdv.16440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/24/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Methotrexate (MTX) is the first-line treatment for psoriasis in China. The metabolic processes of MTX include various proteins and genes. Previous studies have shown that gene polymorphisms had significant impacts on the efficacy of MTX. However, the influence of gene polymorphisms has not been reported in the Chinese psoriatic patients. OBJECTIVE The aim of this study was to verify the impacts of candidate genes polymorphisms on the effectiveness of MTX in a Chinese psoriatic population. METHODS In this study, we enrolled 259 psoriasis patients from two clinical centres. Each of them received MTX treatment at 7.5-15 mg/week for at least 8 weeks. Patients were stratified as responders and non-responders according to whether the Psoriasis Area and Severity Index score declined more than 75% (PASI75). According to previous reports, 16 single nucleotide polymorphisms (SNPs) were selected and genotyped for each patient using the Sequenom platform. Fisher's exact test, the chi-square test, Mann-Whitney tests and ANOVA analyses were used for statistical analysis. RESULTS Among 259 patients, there were 182 males and 77 females, 63 patients with psoriatic arthritis and 196 patients without arthritis phenotype, and the age of all patients ranged from 19 to 70 years (49.7 ± 13.6). The baseline PASI value of patients was 13.8 ± 8.5, and 33.2% of patients achieved a PASI75 response after MTX treatment. Patients carrying the ATP-binding cassette subfamily B member 1 gene (ABCB1) rs1045642 TT genotype were associated with more severe psoriasis skin lesion (P = 0.032). Furthermore, the ABCB1 rs1045642 TT genotype was found to be more frequent in non-responders (P = 0.017), especially in moderate-to-severe patients (P = 0.002) and patients without psoriatic arthritis (P = 0.026) after MTX treatment. CONCLUSION We have demonstrated for the first time that polymorphism of the ABCB1 rs1045642 TT genotype is predictive of a worse clinical response of skin lesions to MTX therapy in a Chinese psoriatic population.
Collapse
Affiliation(s)
- M Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - W Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - P Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - K Yan
- Department of Dermatology, Dalian Dermatosis Hospital, Dalian, Liaoning, China
| | - C Lv
- Gerontology Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - M Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - Y Lu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - Q Qin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - Y Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - W Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| | - X Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,Department of Dermatology, Hua Shan Hospital, Fu dan University, Shanghai, China
| |
Collapse
|
4
|
Yang L, Wu H, de Winter BCM, Sheng CC, Qiu HQ, Cheng Y, Chen J, Zhao QL, Huang J, Jiao Z, Xie RX. Pharmacokinetics and pharmacogenetics of high-dose methotrexate in Chinese adult patients with non-Hodgkin lymphoma: a population analysis. Cancer Chemother Pharmacol 2020; 85:881-897. [PMID: 32246190 DOI: 10.1007/s00280-020-04058-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE High-dose methotrexate (HD-MTX) is widely used in the treatment of non-Hodgkin lymphoma (NHL), but the pharmacokinetic properties of HD-MTX in Chinese adult patients with NHL have not yet been established through an approach that integrates genetic covariates. The purposes of this study were to identify both physiological and pharmacogenomic covariates that can explain the inter- and intraindividual pharmacokinetic variability of MTX in Chinese adult patients with NHL and to explore a new sampling strategy for predicting delayed MTX elimination. METHODS A total of 852 MTX concentrations from 91 adult patients with NHL were analyzed using the nonlinear mixed-effects modeling method. FPGS, GGH, SLCO1B1, ABCB1 and MTHFR were genotyped using the Sequenom MassARRAY technology platform and were screened as covariates. The ability of different sampling strategies to predict the MTX concentration at 72 h was assessed through maximum a posteriori Bayesian forecasting using a validation dataset (18 patients). RESULTS A two-compartment model adequately described the data, and the estimated mean MTX clearance (CL) was 6.03 L/h (9%). Creatinine clearance (CrCL) was identified as a covariate for CL, whereas the intercompartmental clearance (Q) was significantly affected by the body surface area (BSA). However, none of the genotypes exerted a significant effect on the pharmacokinetic properties of MTX. The percentage of patients with concentrations below 0.2 µmol/L at 72 h decreased from 65.6 to 42.6% when the CrCL decreased from 90 to 60 ml/min/1.73 m2 with a scheduled dosing of 3 g/m2, and the same trend was observed with dose regimens of 1 g/m2 and 2 g/m2. Bayesian forecasting using the MTX concentrations at 24 and 42 h provided the best predictive performance for estimating the MTX concentration at 72 h after dosing. CONCLUSIONS The MTX population pharmacokinetic model developed in this study might provide useful information for establishing personalized therapy involving MTX for the treatment of adult patients with NHL.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuma Road 420, Fuzhou, 350014, China
| | - Hui Wu
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chang-Cheng Sheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.,Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hong-Qiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Juan Chen
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuma Road 420, Fuzhou, 350014, China
| | - Qiu-Ling Zhao
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuma Road 420, Fuzhou, 350014, China
| | - Jing Huang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuma Road 420, Fuzhou, 350014, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China. .,Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China.
| | - Rui-Xiang Xie
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuma Road 420, Fuzhou, 350014, China.
| |
Collapse
|
5
|
Sundbaum JK, Baecklund E, Eriksson N, Hallberg P, Kohnke H, Wadelius M. MTHFR, TYMS and SLCO1B1 polymorphisms and adverse liver effects of methotrexate in rheumatoid arthritis. Pharmacogenomics 2020; 21:337-346. [PMID: 32024416 DOI: 10.2217/pgs-2019-0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aims: To investigate whether variants of MTHFR, TYMS and SLCO1B1 are associated with ALT elevation in rheumatoid arthritis patients starting methotrexate (MTX). Patients & methods: Clinical and laboratory data were collected from the start of MTX treatment. Genotyping of MTHFR, TYMS and SLCO1B1 was performed. Univariate and multiple logistic regression were used for statistical analysis. Results: 34 out of 369 patients experienced ALT >1.5 × ULN less than 6 months from start. MTHFR A1298C (rs1801131) was nominally associated with an ALT >1.5 × ULN within 6 months after the start of MTX (OR = 1.7 [95% CI: 1.04-2.9]; p = 0.03), but did not pass correction for multiple testing. A multiple model containing MTHFR 1298C and clinical factors predicted the outcome (C-statistic 0.735). TYMS and SLCO1B1 were not associated with the outcome. Conclusions: A model containing MTHFR 1298C and clinical factors might predict risk of early ALT elevation.
Collapse
Affiliation(s)
- Johanna Karlsson Sundbaum
- Department of Medical Sciences, Rheumatology, Uppsala University, Sweden.,Department of Health Sciences, Luleå University of Technology, Luleå
| | - Eva Baecklund
- Department of Medical Sciences, Rheumatology, Uppsala University, Sweden
| | - Niclas Eriksson
- Department of Medical Sciences, Clinical Pharmacology & Science for Life Laboratory, Uppsala University, Sweden
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacology & Science for Life Laboratory, Uppsala University, Sweden
| | - Hugo Kohnke
- Department of Medical Sciences, Clinical Pharmacology & Science for Life Laboratory, Uppsala University, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacology & Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
6
|
Cwiklinska M, Czogala M, Kwiecinska K, Madetko-Talowska A, Szafarz M, Pawinska K, Wieczorek A, Klekawka T, Rej M, Stepien K, Halubiec P, Lazarczyk A, Miklusiak K, Bik-Multanowski M, Balwierz W, Skoczen S. Polymorphisms of SLC19A1 80 G>A, MTHFR 677 C>T, and Tandem TS Repeats Influence Pharmacokinetics, Acute Liver Toxicity, and Vomiting in Children With Acute Lymphoblastic Leukemia Treated With High Doses of Methotrexate. Front Pediatr 2020; 8:307. [PMID: 32612964 PMCID: PMC7308427 DOI: 10.3389/fped.2020.00307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction: High dose methotrexate (HD-Mtx) is highly effective and significantly improves overall acute lymphoblastic leukemia (ALL) patients survival. The pharmacodynamics of Mtx depends on the polymorphism of genes encoding proteins engaged in the folate metabolism pathway. The aim of the current study is to determine the relationship between variants of folate metabolism-related genes and the frequency of acute toxicities of HD-Mtx. Material and Methods: A group of 133 patients aged 1.5-18.1 years (median: 6.3) was treated in accordance with the ALL-IC-2002 and ALL-IC-2009 protocols. The following polymorphisms were determined: 80 G>A SLC19A1 (solute carrier family 19 member 1; rs1051266) with direct DNA sequencing, as well as 677 C>T MTHFR (methylenetetrahydrofolate reductase; rs1801133) and the tandem repeats of the TS (thymidylate synthase) with PCR technique. HD-Mtx organ toxicities were evaluated based on the laboratory tests results and the National Cancer Institute criteria. Results: In patients with genotypes AA for SLC19A1 and CC or CT for MTHFR Mtx steady state concentrations (Css) and AUCinf were distinctly higher. In patients with genotype 3R/3R for TS initial elimination rate constant was significantly higher (P = 0.003). Patients receiving Mtx at the dose of 5 g/m2 had lower clearance (4.35 vs. 8.92 L/h/m2) as compared to the ones receiving 2 g/m2 that indicates non-linear Mtx elimination at the higher dose. Liver impairment was the most frequently observed toxicity. The homozygous genotype was associated with a significantly higher incidence of hepatic toxicity for both the SLC19A1 (P = 0.037) and TS (P = 0.002). Logistic regression analysis indicated an increased risk of vomiting for the 2R/3R genotype of the TS gene (OR 3.20, 95% CI 1.33-7.68, P = 0.009) and for vomiting and hepatic toxicity for the 3R/3R genotype (vomiting: OR 3.39, 95% CI 1.12-10.23, P = 0.031; liver toxicity: OR 2.28, 95% CI 1.05-4.95, P = 0.038). None of the acute toxicities differed between the analyzed dosing groups. Conclusions: Determination of polymorphisms of SLC19A1, MTHFR, and TS genes might allow for a better prior selection of patients with higher risk of elevated Mtx levels. Our study is the first one to report the increased risk of hepatotoxicity and vomiting in patients with TS polymorphisms.
Collapse
Affiliation(s)
- Magdalena Cwiklinska
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Malgorzata Czogala
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Kinga Kwiecinska
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Chair of Pediatrics, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Malgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Pawinska
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wieczorek
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Klekawka
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Rej
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Konrad Stepien
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Przemyslaw Halubiec
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Lazarczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, Kraków, Poland
| | - Karol Miklusiak
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, Kraków, Poland
| | - Miroslaw Bik-Multanowski
- Department of Medical Genetics, Chair of Pediatrics, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Walentyna Balwierz
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Szymon Skoczen
- Department of Oncology and Hematology, University Children's Hospital, Kraków, Poland.,Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Giletti A, Vital M, Lorenzo M, Cardozo P, Borelli G, Gabus R, Martínez L, Díaz L, Assar R, Rodriguez MN, Esperón P. Methotrexate pharmacogenetics in Uruguayan adults with hematological malignant diseases. Eur J Pharm Sci 2017; 109:480-485. [DOI: 10.1016/j.ejps.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/02/2017] [Accepted: 09/02/2017] [Indexed: 12/24/2022]
|
8
|
Gervasini G, de Murillo SG, Jiménez M, de la Maya MD, Vagace JM. Effect of polymorphisms in transporter genes on dosing, efficacy and toxicity of maintenance therapy in children with acute lymphoblastic leukemia. Gene 2017; 628:72-77. [DOI: 10.1016/j.gene.2017.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
|
9
|
Yazıcıoğlu B, Kaya Z, Güntekin Ergun S, Perçin F, Koçak Ü, Yenicesu İ, Gürsel T. Influence of Folate-Related Gene Polymorphisms on High-Dose Methotrexate-Related Toxicity and Prognosis in Turkish Children with Acute Lymphoblastic Leukemia. Turk J Haematol 2017; 34:143-150. [PMID: 27094381 PMCID: PMC5440866 DOI: 10.4274/tjh.2016.0007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/25/2016] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE High-dose methotrexate (HD-MTX) is widely used in the consolidation phase of childhood acute lymphoblastic leukemia (ALL), but the roles that polymorphisms in folate-related genes (FRGs) play in HD-MTX toxicity and prognosis in children with ALL are not understood. The aims of this study were to investigate the frequencies of polymorphisms in the genes for thymidylate synthase (TS), methionine synthase reductase (MTRR), and methylene tetrahydrofolate reductase (MTHFR) in Turkish children with ALL and to assess associations between these polymorphisms and HD-MTX-related toxicity and leukemia prognosis in this patient group. MATERIALS AND METHODS FRG polymorphisms were assessed by real-time polymerase chain reaction. Survival status, MTX levels, and toxicity data were retrieved from 106 patients' charts. RESULTS The allele frequencies for the FRG polymorphisms were as follows: TS 2R 41.0%, 3R 57.0%, and 4R 2.0%; MTRR 66A 42.4% and 66G 57.6%; MTHFR 677C 59.3% and 677T 40.7%; and MTHFR 1298A 58.1% and 1298C 41.9%. At the 48th hour of HD-MTX infusion, serum MTX was significantly higher in patients who had TS 2R/3R/4R variants as compared to those with wild-type TS (p<0.05). No significant differences were detected with respect to event-free survival or toxicity between wild-type and other FRG variants. CONCLUSION The frequencies of FRG polymorphisms in Turkish children with ALL are similar to those reported in other Caucasian populations. This is the first published finding of the TS 3R/4R variant in the Turkish population. The results indicate that HD-MTX can be tolerated by leukemic children with some polymorphic variants of FRG; thus, it may prevent future risk of leukemic relapse.
Collapse
Affiliation(s)
| | - Zühre Kaya
- Gazi University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey E-mail:
| | | | | | | | | | | |
Collapse
|
10
|
Kung CP, Leu JIJ, Basu S, Khaku S, Anokye-Danso F, Liu Q, George DL, Ahima RS, Murphy ME. The P72R Polymorphism of p53 Predisposes to Obesity and Metabolic Dysfunction. Cell Rep 2016; 14:2413-25. [PMID: 26947067 DOI: 10.1016/j.celrep.2016.02.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 01/14/2023] Open
Abstract
p53 is well known for its tumor suppressor role, but this protein also has a poorly understood role in the regulation of metabolism. Human studies have implicated a common polymorphism at codon 72 of p53 in diabetic and pre-diabetic phenotypes. To understand this role, we utilized a humanized mouse model of the p53 codon 72 variants and monitored these mice following challenge with a high-fat diet (HFD). Mice with the arginine 72 (R72) variant of p53 developed more-severe obesity and glucose intolerance on a HFD, compared to mice with the proline 72 variant (P72). R72 mice developed insulin resistance, islet hypertrophy, increased infiltration of immune cells, and fatty liver disease. Gene expression analyses and studies with small-molecule inhibitors indicate that the p53 target genes Tnf and Npc1l1 underlie this phenotype. These results shed light on the role of p53 in obesity, metabolism, and inflammation.
Collapse
Affiliation(s)
- Che-Pei Kung
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sakina Khaku
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Frederick Anokye-Danso
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Biostatistics Unit, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Donna L George
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rexford S Ahima
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|