1
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
2
|
Aebisher D, Woźnicki P, Dynarowicz K, Kawczyk-Krupka A, Cieślar G, Bartusik-Aebisher D. Photodynamic Therapy and Immunological View in Gastrointestinal Tumors. Cancers (Basel) 2023; 16:66. [PMID: 38201494 PMCID: PMC10777986 DOI: 10.3390/cancers16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastrointestinal cancers are a specific group of oncological diseases in which the location and nature of growth are of key importance for clinical symptoms and prognosis. At the same time, as research shows, they pose a serious threat to a patient's life, especially at an advanced stage of development. The type of therapy used depends on the anatomical location of the cancer, its type, and the degree of progression. One of the modern forms of therapy used to treat gastrointestinal cancers is PDT, which has been approved for the treatment of esophageal cancer in the United States. Despite the increasingly rapid clinical use of this treatment method, the exact immunological mechanisms it induces in cancer cells has not yet been fully elucidated. This article presents a review of the current understanding of the mode of action of photodynamic therapy on cells of various gastrointestinal cancers with an emphasis on colorectal cancer. The types of cell death induced by PDT include apoptosis, necrosis, and pyroptosis. Anticancer effects are also a result of the destruction of tumor vasculature and activation of the immune system. Many reports exist that concern the mechanism of apoptosis induction, of which the mitochondrial pathway is most often emphasized. Photodynamic therapy may also have a beneficial effect on such aspects of cancer as the ability to develop metastases or contribute to reducing resistance to known pharmacological agents.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
3
|
Lerouge L, Gries M, Chateau A, Daouk J, Lux F, Rocchi P, Cedervall J, Olsson AK, Tillement O, Frochot C, Acherar S, Thomas N, Barberi-Heyob M. Targeting Glioblastoma-Associated Macrophages for Photodynamic Therapy Using AGuIX ®-Design Nanoparticles. Pharmaceutics 2023; 15:pharmaceutics15030997. [PMID: 36986856 PMCID: PMC10057379 DOI: 10.3390/pharmaceutics15030997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight a relationship between NRP-1 and M2 macrophage infiltration. In order to induce a photodynamic effect, multifunctional AGuIX®-design nanoparticles were used in combination with a magnetic resonance imaging (MRI) contrast agent, as well as a porphyrin as the photosensitizer molecule and KDKPPR peptide ligand for targeting the NRP-1 receptor. The main objective of this study was to characterize the impact of macrophage NRP-1 protein expression on the uptake of functionalized AGuIX®-design nanoparticles in vitro and to describe the influence of GBM cell secretome post-PDT on the polarization of macrophages into M1 or M2 phenotypes. By using THP-1 human monocytes, successful polarization into the macrophage phenotypes was argued via specific morphological traits, discriminant nucleocytoplasmic ratio values, and different adhesion abilities based on real-time cell impedance measurements. In addition, macrophage polarization was confirmed via the transcript-level expression of TNFα, CXCL10, CD-80, CD-163, CD-206, and CCL22 markers. In relation to NRP-1 protein over-expression, we demonstrated a three-fold increase in functionalized nanoparticle uptake for the M2 macrophages compared to the M1 phenotype. The secretome of the post-PDT GBM cells led to nearly a three-fold increase in the over-expression of TNFα transcripts, confirming the polarization to the M1 phenotype. The in vivo relationship between post-PDT efficiency and the inflammatory effects points to the extensive involvement of macrophages in the tumor zone.
Collapse
Affiliation(s)
- Lucie Lerouge
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Mickaël Gries
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Alicia Chateau
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Joël Daouk
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - François Lux
- Institute of Light and Matter (ILM), UMR5306, Université de Lyon-CNRS, 69100 Lyon, France
| | - Paul Rocchi
- Institute of Light and Matter (ILM), UMR5306, Université de Lyon-CNRS, 69100 Lyon, France
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, 75105 Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, 75105 Uppsala, Sweden
| | - Olivier Tillement
- Institute of Light and Matter (ILM), UMR5306, Université de Lyon-CNRS, 69100 Lyon, France
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory (LRGP), UMR7274, Université de Lorraine-CNRS, 54000 Nancy, France
| | - Samir Acherar
- Laboratory of Chemical Physics of Macromolecules (LCPM), UMR7375, Université de Lorraine-CNRS, 54000 Nancy, France
| | - Noémie Thomas
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine-French National Scientific Research Center (CNRS), 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
4
|
Dias LM, de Keijzer MJ, Ernst D, Sharifi F, de Klerk DJ, Kleijn TG, Desclos E, Kochan JA, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Fens MH, Barendrecht AD, Cavaco JEB, Huang X, Xu Y, Pan W, den Broeder MJ, Bogerd J, Schulz RW, Castricum KC, Thijssen VL, Cheng S, Ding B, Krawczyk PM, Heger M. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112500. [PMID: 35816857 DOI: 10.1016/j.jphotobiol.2022.112500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Daniël Ernst
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Leonardo P Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB 2), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Albert C van Wijk
- Department of Surgery, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - José E B Cavaco
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Xuan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Marjo J den Broeder
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Kitty C Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, PR China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Ibarra LE, Beaugé L, Arias-Ramos N, Rivarola VA, Chesta CA, López-Larrubia P, Palacios RE. Trojan horse monocyte-mediated delivery of conjugated polymer nanoparticles for improved photodynamic therapy of glioblastoma. Nanomedicine (Lond) 2020; 15:1687-1707. [DOI: 10.2217/nnm-2020-0106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To assess monocyte-based delivery of conjugated polymer nanoparticles (CPNs) for improved photodynamic therapy (PDT) in glioblastoma (GBM). Materials & methods: Human monocyte cells (THP-1) and murine monocytes isolated from bone marrow (mBMDMs) were employed as stealth CPN carriers to penetrate into GBM spheroids and an orthotopic model of the tumor. The success of PDT, using this cell-mediated targeting strategy, was determined by its effect on the spheroids. Results: CPNs did not affect monocyte viability in the absence of light and did not show nonspecific release after cell loading. Activated monocytes incorporated CPNs in a higher proportion than monocytes in their naive state, without a loss of cellular functionality. In vitro PDT efficacy using cell-mediated delivery was superior to that using non vehiculized CPNs. Conclusion: CPN-loaded monocytes could efficiently deliver CPNs into GBM spheroids and the orthotopic model. Improved PDT in spheroids was confirmed using this delivery strategy.
Collapse
Affiliation(s)
- Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Lucía Beaugé
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Nuria Arias-Ramos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC/UAM, Madrid, 28029, España
| | - Viviana A Rivarola
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y CONICET, Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Química, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC/UAM, Madrid, 28029, España
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y CONICET, Río Cuarto, 5800, Córdoba, Argentina
- Departamento de Química, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, 5800, Córdoba, Argentina
| |
Collapse
|
6
|
Lamberti MJ, Morales Vasconsuelo AB, Ferrara MG, Rumie Vittar NB. Recapitulation of Hypoxic Tumor-stroma Microenvironment to Study Photodynamic Therapy Implications. Photochem Photobiol 2020; 96:897-905. [PMID: 32012283 DOI: 10.1111/php.13220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Tumor microenvironment (TME) is a dynamic ecosystem where fibroblasts are recruited in order to provide a niche to support growth and, in some extent, to promote therapeutic resistance. However, the role of fibroblasts in stimulating or impairing photodynamic therapy (PDT) outcome has not yet been fully addressed. PDT is based on interactions between light, oxygen and photosensitizer, leading to phototoxic reactions that culminate in cell death. In this study, we demonstrated the consequences of a hypoxic stromal phenotype on tumor mass for exploring PDT response. We mimicked TME complexity implementing colon cancer cells and fibroblasts 3D cultures called spheroids. Using hypoxia reporting lines, we verified that homotypic spheroids exhibited a size-dependent transcriptional HIF-1 activity. When cocultured, fibroblasts were localized in the hypoxic core. In homotypic stromal spheroids, the distribution of the endogenous photosensitizer PpIX was homogeneous while decreased in hypoxic areas of tumor 3D cultures. When monocultured, fibroblasts were more efficient to produce PpIX from its prodrug Me-ALA. Interestingly, the cross talk between cancer cells and fibroblasts attenuated PpIX accumulation and conferred tumor PDT resistance when compared to homotypic 3D cultures. Overall, our data suggest that stroma and tumor act in an integrated, reciprocal fashion which could ultimately influence on therapeutic response.
Collapse
Affiliation(s)
- María Julia Lamberti
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Ana Belén Morales Vasconsuelo
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María Gracia Ferrara
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Natalia Belén Rumie Vittar
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
7
|
de Andrade LR, Tedesco AC, Primo FL, Farias GR, da Silva JR, Longo JP, de Almeida MC, de Souza PE, de Azevedo RB, Pinheiro WO, Lacava ZG. Tumor cell death in orthotopic breast cancer model by NanoALA: a novel perspective on photodynamic therapy in oncology. Nanomedicine (Lond) 2020; 15:1019-1036. [PMID: 32264766 DOI: 10.2217/nnm-2019-0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Nano-5-aminolevulic acid (NanoALA)-mediated photodynamic therapy (PDT), an oil-in-water polymeric nanoemulsion of ALA, was evaluated in a murine model of breast cancer. Materials & methods: Analysis of ALA-derived protoporphyrin IX production and acute toxicity test, biocompatibility and treatment efficacy, and long-term effect of NanoALA-PDT on tumor progression were performed. Results: The nanoformulation favored the prodrug uptake by tumor cells in a shorter time (1.5 h). As a result, the adverse effects were negligible and the response rates for primary mammary tumor control were significantly improved. Tumor progression was slower after NanoALA-PDT treatment, providing longer survival. Conclusion: NanoALA is a good proactive drug candidate for PDT against cancer potentially applied as adjuvant/neoadjuvant intervention strategy for breast cancer.
Collapse
Affiliation(s)
- Laise R de Andrade
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology & Tissue Engineering - Photobiology & Photomedicine Research Group, Faculty of Philosophy, Sciences & Letters of Ribeirão Preto, University of São Paulo, 14010-100, Ribeirão Preto, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, SP, Brazil
| | - Gabriel R Farias
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Jaqueline R da Silva
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - João Pf Longo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Marcos C de Almeida
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Paulo En de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, 70919-970, Brasília, DF, Brazil
| | - Ricardo B de Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Willie O Pinheiro
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil.,Post-Graduation Program in Sciences & Technologies in Health, Faculty of Ceilândia, University of Brasília, 72220-275, Brasília, DF, Brazil
| | - Zulmira Gm Lacava
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
8
|
Wachowska M, Stachura J, Tonecka K, Fidyt K, Braniewska A, Sas Z, Kotula I, Rygiel TP, Boon L, Golab J, Muchowicz A. Inhibition of IDO leads to IL-6-dependent systemic inflammation in mice when combined with photodynamic therapy. Cancer Immunol Immunother 2020; 69:1101-1112. [PMID: 32107566 PMCID: PMC7230067 DOI: 10.1007/s00262-020-02528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
It was previously reported that the activation of antitumor immune response by photodynamic therapy (PDT) is crucial for its therapeutic outcome. Excessive PDT-mediated inflammation is accompanied by immunosuppressive mechanisms that protect tissues from destruction. Thus, the final effect of PDT strongly depends on the balance between the activation of an adoptive arm of immune response and a range of activated immunosuppressive mechanisms. Here, with flow cytometry and functional tests, we evaluate the immunosuppressive activity of tumor-associated myeloid cells after PDT. We investigate the antitumor potential of PDT combined with indoleamine 2,3-dioxygenase 1 (IDO) inhibitor in the murine 4T1 and E0771 orthotopic breast cancer models. We found that the expression of IDO, elevated after PDT, affects the polarization of T regulatory cells and influences the innate immune response. Our results indicate that, depending on a therapeutic scheme, overcoming IDO-induced immunosuppressive mechanisms after PDT can be beneficial or can lead to a systemic toxic reaction. The inhibition of IDO, shortly after PDT, activates IL-6-dependent toxic reactions that can be diminished by the use of anti-IL-6 antibodies. Our results emphasize that deeper investigation of the physiological role of IDO, an attractive target for immunotherapies of cancer, is of great importance.
Collapse
Affiliation(s)
- Malgorzata Wachowska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age Medical, University of Warsaw, Warsaw, Poland
| | - Joanna Stachura
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Tonecka
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agata Braniewska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kotula
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age Medical, University of Warsaw, Warsaw, Poland
| | - Tomasz Piotr Rygiel
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland
| | | | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland. .,Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.
| |
Collapse
|
9
|
Ji J, Wang P, Zhou Q, Zhu L, Zhang H, Zhang Y, Zheng Z, Bhatta AK, Zhang G, Wang X. CCL8 enhances sensitivity of cutaneous squamous cell carcinoma to photodynamic therapy by recruiting M1 macrophages. Photodiagnosis Photodyn Ther 2019; 26:235-243. [DOI: 10.1016/j.pdpdt.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/09/2023]
|
10
|
dos Santos DP, Soares Lopes DP, de Moraes RC, Vieira Gonçalves C, Pereira Rosa L, da Silva Rosa FC, da Silva RAA. Photoactivated resveratrol against Staphylococcus aureus infection in mice. Photodiagnosis Photodyn Ther 2019; 25:227-236. [PMID: 30630110 DOI: 10.1016/j.pdpdt.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023]
|
11
|
Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance. Cell Oncol (Dordr) 2019; 42:173-196. [PMID: 30756254 DOI: 10.1007/s13402-018-00418-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Previous analyses of the tumor microenvironment (TME) have resulted in a concept that tumor progression may depend on interactions between cancer cells and its surrounding stroma. An important aspect of these interactions is the ability of cancer cells to modulate stroma behavior, and vice versa, through the action of a variety of soluble mediators. Here, we aimed to identify soluble factors present in the TME of colorectal cancer cells that may affect relevant pathways through secretome profiling. METHODS To partially recapitulate the TME and its architecture, we co-cultured colorectal cancer cells (SW480, TC) with stromal fibroblasts (MRC-5, F) as 3D-spheroids. Subsequent characterization of both homotypic (TC) and heterotypic (TC + F) spheroid secretomes was performed using label-free liquid chromatography-mass spectrometry (LC-MS). RESULTS Through bioinformatic analysis using the NCI-Pathway Interaction Database (NCI-PID) we found that the HIF-1 signaling pathway was most highly enriched among the proteins whose secretion was enhanced in the heterotypic spheroids. Previously, we found that HIF-1 may be associated with resistance of colorectal cancer cells to photodynamic therapy (PDT), an antitumor therapy that combines photosensitizing agents, O2 and light to create a harmful photochemical reaction. Here, we found that the presence of fibroblasts considerably diminished the sensitivity of colorectal cancer cells to photodynamic activity. Although the biological significance of the HIF-1 pathway of secretomes was decreased after photosensitization, this decrease was partially reversed in heterotypic 3D-spheroids. HIF-1 pathway modulation by both PDT and stromal fibroblasts was confirmed through expression assessment of the HIF-target VEGF, as well as through HIF transcriptional activity assessment. CONCLUSION Collectively, our results delineate a potential mechanism by which stromal fibroblasts may enhance colorectal cancer cell survival and photodynamic treatment resistance via HIF-1 pathway modulation.
Collapse
|
12
|
Zou K, Wang Y, Hu Y, Zheng L, Xu W, Li G. Specific tumor-derived CCL2 mediated by pyruvate kinase M2 in colorectal cancer cells contributes to macrophage recruitment in tumor microenvironment. Tumour Biol 2017; 39:1010428317695962. [PMID: 28347237 DOI: 10.1177/1010428317695962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Development of colorectal cancer has been considered as a result of imbalance of pro- and anti-inflammatory intestinal microenvironment accompanied by macrophage recruitment. Despite macrophages are implicated in remodeling tumor microenvironment, the mechanism of macrophage recruitment is not fully elucidated yet. In this study, we reported clinical association of highly expressed pyruvate kinase M2 in colorectal cancer with macrophage attraction. The conditioned medium from Caco-2 and HT-29 cells with depleted pyruvate kinase M2 dramatically reduced macrophage recruitment, which is reversed by addition of, a critical chemotaxis factor to macrophage migration, rCCL2. Silencing of endogenous pyruvate kinase M2 markedly decreased CCL2 expression and secretion by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Endogenous pyruvate kinase M2 interacted with p65 and mediated nuclear factor-κB signaling pathway and mainly regulated phosphorylation of Ser276 on p65 nuclear factor-κB. In addition, inhibition of macrophage recruitment caused by pyruvate kinase M2 silencing was rescued by ectopic expression of p65. Interestingly, pyruvate kinase M2 highly expressed in colorectal cancer tissue, which is correction with macrophage distribution. Taken together, we revealed a novel mechanism of pyruvate kinase M2 in promoting colorectal cancer progression by recruitment of macrophages through p65 nuclear factor-κB-mediated expression of CCL2.
Collapse
Affiliation(s)
- Kejian Zou
- 1 Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,2 Hainan General Hospital, Haikou, China
| | - Yaodong Wang
- 3 Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Yan Hu
- 2 Hainan General Hospital, Haikou, China
| | | | - Wanfu Xu
- 5 Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guoxin Li
- 1 Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Chitgupi U, Li Y, Chen M, Shao S, Beitelshees M, Tan MJ, Neelamegham S, Pfeifer BA, Jones C, Lovell JF. Bimodal Targeting Using Sulfonated, Mannosylated PEI for Combined Gene Delivery and Photodynamic Therapy. Photochem Photobiol 2017; 93:600-608. [PMID: 27935058 DOI: 10.1111/php.12688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) and gene delivery have both been used to target both cancer cells and tumor-associated macrophages (TAMs). Given the complex nature of tumor tissue, there could be merit in combining these strategies simultaneously. In this study, we developed a bimodal targeting approach to both cancer cells and macrophages, employing materials conducive to both gene delivery and PDT. Polymers libraries were created that consisted of cationic polyethyleneimine (PEI) conjugated to the photosensitizer pyropheophorbide-a, with sulfonation (to target selectin-expressing cells) and mannosylation (to target TAMs). Polyplexes, consisting of these polymers electrostatically bound to DNA, were analyzed for transfection efficacy and cytotoxicity toward epithelial cells and macrophages to assess dual-targeting. This study provides preliminary proof of principle for using modified PEI for targeted gene delivery and PDT.
Collapse
Affiliation(s)
- Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Myles Joshua Tan
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| | | | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
14
|
Pan P, W Skaer C, Wang HT, Oshima K, Huang YW, Yu J, Zhang J, M Yearsley M, A Agle K, R Drobyski W, Chen X, Wang LS. Loss of free fatty acid receptor 2 enhances colonic adenoma development and reduces the chemopreventive effects of black raspberries in ApcMin/+ mice. Carcinogenesis 2016; 38:86-93. [PMID: 27866157 DOI: 10.1093/carcin/bgw122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
We previously showed that black raspberries (BRBs) have beneficial effects in human colorectal cancer and a mouse model of colorectal cancer (ApcMin/+). The current study investigated the role of free fatty acid receptor 2 (FFAR2) in colon carcinogenesis and whether the FFAR2 signaling pathway contributes to BRB-mediated chemoprevention in mice. FFAR2 (also named GPR43) is a member of the G-protein-coupled receptor family that is expressed in leukocytes and colon. ApcMin/+ and ApcMin/+-FFAR2-/- mice were given a control diet or the control diet supplemented with 5% BRBs for 8 weeks. FFAR2 deficiency promoted colonic polyp development, with 100% incidence and increased polyp number and size. The ApcMin/+ mice developed colonic tubular adenoma, whereas the ApcMin/+-FFAR2-/- mice developed colonic tubular adenoma with high-grade dysplasia. FFAR2 deficiency also enhanced the cAMP-PKA-CREB-HDAC pathway, downstream of FFAR2 signaling, and increased activation of the Wnt pathway, and raised the percentage of GR-1+ neutrophils in colonic lamina propria (LP) and increased infiltration of GR-1+ neutrophils into colonic polyps. BRBs suppressed colonic polyp development and inhibited the cAMP-PKA-CREB-HDAC and Wnt pathways in the ApcMin/+ mice but not the ApcMin/+-FFAR2-/- mice. They also increased the percentage of GR-1+ neutrophils and cytokine secretion in colonic LP and decreased the infiltration of GR-1+ neutrophils and IL-1β expression in colon polyps of ApcMin/+ mice but not ApcMin/+-FFAR2-/- mice. These results suggest that loss of FFAR2 drives colon tumorigenesis and that BRBs require functional FFAR2 to be chemopreventive. BRBs have the potential to modulate the host immune system, thereby enhancing the antitumor immune microenvironment.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine
| | | | | | | | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | | | - Martha M Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
15
|
Yang Y, Hu Y, Wang H. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5274084. [PMID: 27672421 PMCID: PMC5031843 DOI: 10.1155/2016/5274084] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response.
Collapse
Affiliation(s)
- Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road, Nanjing, Jiangsu 211106, China
| | - Yue Hu
- Department of Biological and Environmental Engineering, Cornell University, 120 Riley Robb, Ithaca, NY 14853, USA
| | - Hongjun Wang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA
| |
Collapse
|
16
|
Dwyer AR, Ellies LG, Holme AL, Pixley FJ. A three-dimensional co-culture system to investigate macrophage-dependent tumor cell invasion. J Biol Methods 2016; 3:e49. [PMID: 31453214 PMCID: PMC6706153 DOI: 10.14440/jbm.2016.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/20/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022] Open
Abstract
Macrophages infiltrate cancers and promote progression to invasion and metastasis.
To directly examine tumor-associated macrophages (TAMs) and tumor cells interacting
and co-migrating in a three-dimensional (3D) environment, we have developed a co-culture
model that uses a PyVmT mouse mammary tumor-derived cell line and mouse bone
marrow-derived macrophages (BMM). The Py8119 cell line was cloned from a
spontaneous mammary tumor in a Tg(MMTV:LTR-PyVmT) C57Bl/6 mouse and
these cells form 3-dimensional (3D) spheroids under conditions of low adhesion.
Co-cultured BMM infiltrate the Py8119 mammospheres and embedding of the
infiltrated mammospheres in Matrigel leads to subsequent invasion of both cell
types into the surrounding matrix. This physiologically relevant co-culture model
enables examination of two critical steps in the promotion of invasion and metastasis
by BMM: 1) macrophage infiltration into the mammosphere and, 2) subsequent invasion
of macrophages and tumor cells into the matrix. Our methodology allows for quantification
of BMM infiltration rates into Py8119 mammospheres and demonstrates that subsequent
tumor cell invasion is dependent upon the presence of infiltrated macrophages. This method
is also effective for screening macrophage motility inhibitors. Thus, we have developed a
robust 3D in vitro co-culture assay that demonstrates a central role for macrophage motility in the promotion of tumor cell invasion.
Collapse
Affiliation(s)
- Amy R Dwyer
- School of Medicine and Pharmacology, University of Western Australia, Perth Australia
| | - Lesley G Ellies
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Andrea L Holme
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Australia
| | - Fiona J Pixley
- School of Medicine and Pharmacology, University of Western Australia, Perth Australia
| |
Collapse
|
17
|
SUN BO, LI WEI, LIU NING. Curative effect of the recent photofrin photodynamic adjuvant treatment on young patients with advanced colorectal cancer. Oncol Lett 2016; 11:2071-2074. [PMID: 26998124 PMCID: PMC4774444 DOI: 10.3892/ol.2016.4179] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/02/2016] [Indexed: 01/10/2023] Open
Abstract
Advanced colorectal cancer has a high mortality rate and conventional treatments have poor therapeutic effects. The aim of the present study was to analyze the recent curative effect and adverse reaction of photofrin photodynamic adjuvant treatment on young patients with advanced colorectal cancer. A total of 23 patients with advanced colorectal cancer who had accepted semiconductor laser photodynamic adjuvant treatment were selected as the observation group. In addition, 30 patients who had accepted concurrent radiotherapy and chemotherapy during the same period served as the control group. The observation group received photofrin (2 mg/kg) intravenously in 100 ml of 5% glucose, followed by the introduction of the endoscopic optical fiber to deliver laser radiation with an intensity of 630 nm wavelength pulse power. After 2 days, necrotic tissues were removed and irradiation of the original or new tumor lesions was performed and necrotic tissues were removed. The total effective rate and survival time was higher and the length of hospital stay was shorter in the observation group in comparison with the control group. The differences were statistically significant (P<0.05). The number of patients in the control and observation groups with symptoms of hematochezia, change in bowel habit, intestinal stimulation and incomplete intestinal obstruction were reduced. Additionally, the reduced ratio of the observation group was significantly increased in comparison with the control group (P<0.05). The adverse reaction rate of the observation group was lower than that of the control group and this difference was also statistically significant (P<0.05). In conclusion, use of photodynamic treatment for young patients with advanced colorectal cancer can effectively improve the clinical symptoms and reduce complications.
Collapse
Affiliation(s)
- BO SUN
- Department of General Surgery, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| | - WEI LI
- Department of General Surgery, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| | - NING LIU
- Department of Emergency Surgery, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|