1
|
Amirmahani F, Ebrahimi N, Askandar RH, Rasouli Eshkaftaki M, Fazeli K, Hamblin MR. Long Noncoding RNAs CAT2064 and CAT2042 may Function as Diagnostic Biomarkers for Prostate Cancer by Affecting Target MicrorRNAs. Indian J Clin Biochem 2024; 39:322-330. [PMID: 39005864 PMCID: PMC11239640 DOI: 10.1007/s12291-021-00999-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is the second most common cancer in men throughout the world, and the main cause of cancer death. Long noncoding RNAs (lncRNAs) act as crucial regulators in many human cancers. In this research, we measured the expression level of novel lncRNAs and their associated micro-RNAs (miRNAs) in PCa. In the present research, three lncRNAs were selected using the Mitranscriptome projec (CAT2064, CAT2042, and CAT2164.2). Samples of prostate tissue (20 PCa, and 20 BPH) and blood (14 PCa, and 14 BPH) were collected and the Real-time Quantitative Polymerase Chain Reaction (RT-qPCR) was used to measure the expression levels of the lncRNAs and their associated miRNAs. Based on our results, CAT2064 was significantly increased and CAT2042 was significantly decreased in human PCa tissue in comparison with BPH tissue. To discriminate PCa from BPH, CAT2064 (P < 0.05; 0.8750 AUC-ROC) showed a better potential as a diagnostic molecular biomarker compared to CAT2042 (P < 0.05; 0.8454 AUC-ROC). Furthermore, RT-qPCR results measured in blood samples from PCa patients showed a higher expression level of CAT2064 (P < 0.0001; AUC-ROC value of 0.8914) in comparison to CAT2042. CAT2064 and CAT2042 showed a positive correlation with the expression of miR-5095 and miR-1273a (r = 0.02885, 0.3202; P = 0.9413, 0.2266, respectively). CAT2064 and CAT2042 also had a negative correlation with miR-1304-3p and miR-1285-5p (r = - 0.3877, - 0.09330; P = 0.15, 0.7311, respectively). Collectively, CAT2064 and CAT2042 and their miRNA targets may constitute a regulatory network in PCa, and could serve as novel biomarkers. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-021-00999-6.
Collapse
Affiliation(s)
- Farzane Amirmahani
- Department of Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Nasim Ebrahimi
- Department of Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Katayoun Fazeli
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| |
Collapse
|
2
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
4
|
Ferris WF. The Role and Interactions of Programmed Cell Death 4 and its Regulation by microRNA in Transformed Cells of the Gastrointestinal Tract. Front Oncol 2022; 12:903374. [PMID: 35847932 PMCID: PMC9277020 DOI: 10.3389/fonc.2022.903374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Data from GLOBOCAN 2020 estimates that there were 19.3 million new cases of cancer and 10.0 million cancer-related deaths in 2020 and that this is predicted to increase by 47% in 2040. The combined burden of cancers of the gastrointestinal (GI) tract, including oesophageal-, gastric- and colorectal cancers, resulted in 22.6% of the cancer-related deaths in 2020 and 18.7% of new diagnosed cases. Understanding the aetiology of GI tract cancers should have a major impact on future therapies and lessen this substantial burden of disease. Many cancers of the GI tract have suppression of the tumour suppressor Programmed Cell Death 4 (PDCD4) and this has been linked to the expression of microRNAs which bind to the untranslated region of PDCD4 mRNA and either inhibit translation or target the mRNA for degradation. This review highlights the properties of PDCD4 and documents the evidence for the regulation of PDCD4 expression by microRNAs in cancers of the GI tract.
Collapse
|
5
|
Xue J, Yi J, Zhu X. Knockdown of UCHL3 inhibits esophageal squamous cell carcinoma progression by reducing CRY2 methylation. Hum Cell 2022; 35:528-541. [PMID: 35088238 DOI: 10.1007/s13577-021-00660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
UCHL3 (Ubiquitin carboxyl-terminal hydrolase L3), a member of deubiquitinating enzymes, has been implicated in various cancers. However, the role of UCHL3 in esophageal squamous cell carcinoma (ESCC) remains unknown. In the current study, we aimed to investigate the role of UCHL3 in ESCC growth and migration, and whether UCHL3 could modulate CRY2 methylation through FOXM1. The expression of UCHL3 and CRY2 in ESCC tissues was assessed using qRT-PCR, western blotting and immunohistochemistry (IHC). Cell viability was determined by CCK-8 and colony formation assays. Hoechst 33342 and flow cytometry were used to detect cell apoptosis. Transwell assay was performed to investigate cell migration and invasion. In vivo animal model was used to assess cell tumorigenesis. Methylation-Specific PCR (MSP) was applied to detect CRY2 methylation in the promoter region. The results showed that UCHL3 expression was elevated in ESCC tissues and cells, while CRY2 expression was decreased. UCHL3 silencing inhibited cell viability, invasion, migration and induced cell apoptosis in vitro, repressed tumor growth in vivo, and increased CRY2 expression and decreased FOXM1 expression. In addition, UCHL3 knockdown decreased CRY2 methylation through downregulating FOXM1, leading to an increase in the expression of CRY2. Moreover, CRY2 silencing abolished UCHL3 deficiency-mediated inhibition in cell growth and migration. In summary, this study reveals that knockdown of UCHL3 inhibits ESCC growth and migration by reducing CRY2 methylation through downregulation of FOXM1 expression.
Collapse
Affiliation(s)
- Jijun Xue
- Department of Thoracic Surgery, Gansu Provincial Cancer Hospital, Lanzhou , 730050, Gansu, China
| | - Jinyuan Yi
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhong Shan 2 Road, Youjiang District, Baise, 533000, Guangxi Zhuang Autonomous Region, China.
| | - Xiaolong Zhu
- Department of Cardiothoracic Surgery, Qingyang People's Hospital, Qingyang, 745000, Gansu, China
| |
Collapse
|
6
|
Yao C, Li Y, Luo L, Xiong Q, Zhong X, Xie F, Feng P. Identification of miRNAs and genes for predicting Barrett's esophagus progressing to esophageal adenocarcinoma using miRNA-mRNA integrated analysis. PLoS One 2021; 16:e0260353. [PMID: 34818353 PMCID: PMC8612537 DOI: 10.1371/journal.pone.0260353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Barrett's esophagus (BE) is defined as any metaplastic columnar epithelium in the distal esophagus, which predisposes to esophageal adenocarcinoma (EAC). Yet, the mechanism through which BE develops to EAC still remain unclear. Moreover, the miRNA-mRNA regulatory network in distinguishing BE from EAC still remains poorly understood. To identify differentially expressed miRNAs (DEMs) and genes (DEGs) between EAC and BE from tissue samples, gene expression microarray datasets GSE13898, GSE26886, GSE1420 and miRNA microarray datasets GSE16456, GSE20099 were downloaded from Gene Expression Omnibus (GEO) database. GEO2R was used to screen the DEMs and DEGs. Pathway and functional enrichment analysis were performed by DAVID database. The protein-protein interaction (PPI) network was constructed by STRING and been visualized by Cytoscape software. Finnal, survival analysis was performed basing TCGA database. A total of 21 DEMs were identified. The enriched functions and pathways analysis inclued Epstein-Barr virus infection, herpesvirus infection and TRP channels. GART, TNFSF11, GTSE1, NEK2, ICAM1, PSMD12, CTNNB1, CDH1, PSEN1, IL1B, CTNND1, JAG1, CDH17, ITCH, CALM1 and ITGA6 were considered as the hub-genes. Hsa-miR-143 and hsa-miR-133b were the highest connectivity target gene. JAG1 was predicted as the largest number of target miRNAs. The expression of hsa-miR-181d, hsa-miR-185, hsa-miR-15b, hsa-miR-214 and hsa-miR-496 was significantly different between normal tissue and EAC. CDH1, GART, GTSE1, NEK2 and hsa-miR-496, hsa-miR-214, hsa-miR-15b were found to be correlated with survival.
Collapse
Affiliation(s)
- Chengjiao Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Geriatrics of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yilin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihong Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaowu Zhong
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- * E-mail: (PF); (XZ)
| | - Fengjiao Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peimin Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- * E-mail: (PF); (XZ)
| |
Collapse
|
7
|
Chen S, Ju G, Gu J, Shi M, Wang Y, Wu X, Wang Q, Zheng L, Xiao T, Fan Y. Competing endogenous RNA network for esophageal cancer progression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1473. [PMID: 34734025 PMCID: PMC8506737 DOI: 10.21037/atm-21-4478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Background Esophageal cancer (ESCA) constitutes one of the most common cancers worldwide. The identification of potential biomarkers is important to improving the diagnostic accuracy and treatment efficiency for patients with ESCA. In this study, we aimed to identify biomarkers related to ESCA progression through a comprehensive analysis of long non-coding RNAs (lncRNAs), microRNA (miRNAs), and mRNA expression profiles in ESCA. Methods Differentially expressed lncRNAs, miRNAs, and mRNAs (DElncRNAs, DEmiRNAs, and DEmRNAs, respectively) in ESCA samples compared with normal controls were obtained. A competing endogenous RNA (ceRNA) network consisting of interacting DElncRNAs, DEmiRNAs, and DEmRNAs was constructed using a combination of the miRCode and TargetScan databases. Relationships between RNAs in the ceRNA network and overall survival in patients with EC were explored through another independent ESCA dataset from The Cancer Genome Atlas. Results A total of 1,014 DElncRNAs, 3,677 DEmRNAs, and 35 DEmiRNAs were identified in ESCA samples compared with normal samples. Functional enrichment analysis indicated that the DEmRNAs were involved in cell activity, inflammatory response, and oxygen metabolism-related biological processes. A ceRNA network containing 5 DEmiRNAs, 582 DEmRNAs and 764 DElncRNAs was obtained. In the survival analysis, 39 genes were found to be significantly associated with overall survival in patients with EC, including GOLGA7, NFYB, TOP1, and TMTC3. Conclusions Our study constructed a ceRNA network for ESCA for the first time, which will be helpful for the disease’s diagnosis and treatment.
Collapse
Affiliation(s)
- Saihua Chen
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Guanjun Ju
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Jianmei Gu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Minxin Shi
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yilang Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaodan Wu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Qing Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Liyun Zheng
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Ting Xiao
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yihui Fan
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
8
|
Xu J, Pan HW, Wang XQ, Chen KP. Status of diagnosis and treatment of esophageal cancer and non-coding RNA correlation research: a narrative review. Transl Cancer Res 2021; 10:4532-4552. [PMID: 35116309 PMCID: PMC8798506 DOI: 10.21037/tcr-21-687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To describe and discuss the progression of the non-coding RNA as biomarkers in early esophageal cancer. BACKGROUND Esophageal cancer without obvious symptoms during early stages is one of the most common cancers, the current clinical treatments offer possibilities of a cure, but the survival rates and the prognoses remain poor, it is a serious threat to human life and health. Most patients are usually diagnosed during terminal stages due to low sensitivity of esophageal cancer's early detection techniques. With the development of molecular biology, an increasing number of non-coding RNAs are found to be associated with the occurrence, development, and prognosis of esophageal cancer. Some of these have begun to be used in clinics and laboratories for diagnosis, treatment, and prognosis, with the goal of reducing mortality. METHODS The information for this paper was collected from a variety of sources, including a search of the keynote's references, a search for texts in college libraries, and discussions with experts in the field of esophageal cancer clinical treatment. CONCLUSIONS Non-coding RNA does play a regulatory role in the development of esophageal cancer, which can predict the occurrence or prognosis of tumors, and become a new class of tumor markers and therapeutic targets in clinical applications. In this review, we survey the recent developments in the incidence, diagnosis, and treatment of esophageal cancer, especially with new research progresses on non-coding RNA biomarkers in detail, and discuss its potential clinical applications.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hui-Wen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xue-Qi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Brancato V, Garbino N, Mannelli L, Aiello M, Salvatore M, Franzese M, Cavaliere C. Impact of radiogenomics in esophageal cancer on clinical outcomes: A pilot study. World J Gastroenterol 2021; 27:6110-6127. [PMID: 34629823 PMCID: PMC8476334 DOI: 10.3748/wjg.v27.i36.6110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is the sixth most common malignancy in the world, and its incidence is rapidly increasing. Recently, several microRNAs (miRNAs) and messenger RNA (mRNA) targets were evaluated as potential biomarkers and regulators of epigenetic mechanisms involved in early diagnosis. In addition, computed tomography (CT) radiomic studies on ESCA improved the early stage identification and the prediction of response to treatment. Radiogenomics provides clinically useful prognostic predictions by linking molecular characteristics such as gene mutations and gene expression patterns of malignant tumors with medical images and could provide more opportunities in the management of patients with ESCA.
AIM To explore the combination of CT radiomic features and molecular targets associated with clinical outcomes for characterization of ESCA patients.
METHODS Of 15 patients with diagnosed ESCA were included in this study and their CT imaging and transcriptomic data were extracted from The Cancer Imaging Archive and gene expression data from The Cancer Genome Atlas, respectively. Cancer stage, history of significant alcohol consumption and body mass index (BMI) were considered as clinical outcomes. Radiomic analysis was performed on CT images acquired after injection of contrast medium. In total, 1302 radiomics features were extracted from three-dimensional regions of interest by using PyRadiomics. Feature selection was performed using a correlation filter based on Spearman’s correlation (ρ) and Wilcoxon-rank sum test respect to clinical outcomes. Radiogenomic analysis involved ρ analysis between radiomic features associated with clinical outcomes and transcriptomic signatures consisting of eight N6-methyladenosine RNA methylation regulators and five up-regulated miRNA. The significance level was set at P < 0.05.
RESULTS Of 25, five and 29 radiomic features survived after feature selection, considering stage, alcohol history and BMI as clinical outcomes, respectively. Radiogenomic analysis with stage as clinical outcome revealed that six of the eight mRNA regulators and two of the five up-regulated miRNA were significantly correlated with ten and three of the 25 selected radiomic features, respectively (-0.61 < ρ < -0.60 and 0.53 < ρ < 0.69, P < 0.05). Assuming alcohol history as clinical outcome, no correlation was found between the five selected radiomic features and mRNA regulators, while a significant correlation was found between one radiomic feature and three up-regulated miRNAs (ρ = -0.56, ρ = -0.64 and ρ = 0.61, P < 0.05). Radiogenomic analysis with BMI as clinical outcome revealed that four mRNA regulators and one up-regulated miRNA were significantly correlated with 10 and two radiomic features, respectively (-0.67 < ρ < -0.54 and 0.53 < ρ < 0.71, P < 0.05).
CONCLUSION Our study revealed interesting relationships between the expression of eight N6-methyladenosine RNA regulators, as well as five up-regulated miRNAs, and CT radiomic features associated with clinical outcomes of ESCA patients.
Collapse
|
10
|
Huang F, Jiang J, Yao Y, Hu S, Wang H, Zhu M, Yu L, Liu Q, Jia H, Xu W. Circular RNA Hsa_circRNA_101996 promotes the development of Gastric Cancer via Upregulating Matrix Metalloproteinases-2/Matrix Metalloproteinases-9 through MicroRNA-143/Ten-eleven translocation-2 Pathway. J Cancer 2021; 12:6665-6675. [PMID: 34659556 PMCID: PMC8518011 DOI: 10.7150/jca.62121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/12/2021] [Indexed: 11/05/2022] Open
Abstract
Background: The long-term survival rate of gastric cancer (GC) patients at advanced stages remains low worldwide. Circular RNAs (circRNAs) a newly studied type of non-coding RNA that play an important role in the pathogenesis and diagnosis of various diseases. In this research, we aimed to explore the functions of hsa_circRNA_101996 in GC cells and an animal model of GC. Methods: The expression of hsa_circRNA_101996, microRNA (miR)-143, and ten-eleven translocation (TET)-2 in GC tissues, the adjacent tissues, and cell lines were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Transwell assays were used to analyze the knockdown effects of hsa_circRNA_101996, miR-143, and overexpression of TET2 on cell proliferation, migration, and invasion abilities. Western blotting was used to analyze the expression of matrix metalloproteinases (MMP)2/MMP9. Binding interactions between, hsa_circRNA_101996 and miR-143 and between, miR-143 and TET2 were detected by Dual-luciferase reporter assays. Levels of protein expression were analyzed by Western blotting. Tumor models were established by subcutaneous injection of tumor cells in Bl6/Rag2/GammaC double knockout mice. Results: The result showed that hsa_circRNA_101996 expression was significantly upregulated in GC tissues compared to that in the adjacent tissues, and its level in cancer tissue was correlated with tumor size, lymphatic metastasis, and distant metastasis. Compared with the low hsa_circRNA_101996 expression group, the three-year survival rate of patients in the high hsa_circRNA_101996 expression group was significantly lower. The knockdown of hsa_circRNA_101996 dramatically suppressed the cell migration, invasion, and proliferation of GC cells by sponging to absorb miR-143 and elevated the expression of TET2. In vivo studies showed that the knockdown of hsa_circRNA_101996 delayed tumor growth. Furthermore, we revealed that TET2 regulates MMP2/MMP9 expression through the DNA demethylation pathway. Conclusion: Our findings indicate that hsa_circRNA_101996 promotes GC development by upregulating MMP2/MMP9 through miR-143/TET2 pathway, which may provide a novel target for GC.
Collapse
Affiliation(s)
- Feng Huang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Jiajia Jiang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Shiyue Hu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - He Wang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Ma Zhu
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Liya Yu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Qingqian Liu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Haoyuan Jia
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, China
| |
Collapse
|
11
|
Gu H, Lin R, Zheng F, Zhang Q. ELK1 activated-long noncoding RNA LBX2-AS1 aggravates the progression of ovarian cancer through targeting miR-4784/KDM5C axis. J Mol Histol 2021; 52:31-44. [PMID: 33099720 DOI: 10.1007/s10735-020-09921-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
As one of the most common cancers in female, ovarian cancer (OC) has become a serious public burden now. Mounting researches have indicated long noncoding RNAs (lncRNAs) can affect many biological processes including cancer development. LncRNA LBX2-AS1 was identified to be an oncogene in some cancers, but the role of LBX2-AS1 in OC remains to be elucidated. Bioinformatics analysis and experiments including ChIP, RT-qPCR, RIP, luciferase reporter, western blot and CCK-8 were performed to explore the role of LBX2-AS1 in OC. LBX2-AS1 expression was markedly increased in OC tissues and cell lines. Functionally, LBX2-AS1 silencing inhibited cell proliferation, migration and stemness but facilitated cell apoptosis in OC. Moreover, depletion of LBX2-AS1 suppressed tumor growth of OC in vivo. Mechanically, LBX2-AS1 was activated by transcriptional factor ELK1. ELK1 enhanced the expression of LBX2-AS1 in OC cells. In addition, miR-4784 was confirmed to be sponged by LBX2-AS1. There was a negative expression correlation between LBX2-AS1 and miR-4784 in OC tissues. Subsequently, KDM5C was identified to be a direct target of miR-4784 in OC cells. KDM5C was negatively regulated by miR-4784 and positively regulated by LBX2-AS1 in terms of expression level. Upregulation of KDM5C reversed the inhibitory effect of LBX2-AS1 depletion on the progression of OC. This study proved that ELK1 activated-LBX2-AS1 aggravated the progression of OC by targeting the miR-4784/KDM5C axis, suggesting that LBX2-AS2 may be a promising diagnostic biomarker of OC.
Collapse
Affiliation(s)
- Hangzhi Gu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China
| | - Rongrong Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China
| | - Feiyun Zheng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China
| | - Qian Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, No. 1 Fuxue Lane, Lucheng District, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
Long R, Liu Z, Li J, Zhang Y, Yu H. HCG11 up-regulation induced by ELK4 suppressed proliferation in vestibular schwannoma by targeting miR-620/ELK4. Cancer Cell Int 2021; 21:5. [PMID: 33402177 PMCID: PMC7786942 DOI: 10.1186/s12935-020-01691-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
Background Vestibular schwannoma (VS) is a kind of benign tumor deriving from the acoustic nerve sheath. Substantial long non-coding RNAs (lncRNAs) were illustrated to have crucial roles in multiple cancers. However, few lncRNAs were elucidated in VS. Methods HCG11, miR-620 and ELK4 expression were tested by RT-qPCR. Gain-of-function experiments were conducted to confirm the effect of HCG11 on VS. Results HCG11 possessed a low expression in VS cell lines. Overexpression of HCG11 repressed cell proliferation but accelerated apoptosis of VS cells. Moreover, we identified ELK4 stimulated the transcription of HCG11 and their affinity was verified by ChIP assays. MiR-620 was chosen to be a target of HCG11 and it was tested to have a high expression in VS cell lines. Moreover, depletion of miR-620 could inhibit cell proliferative ability while fostering apoptosis rate of VS cells. ELK4 was low expressed in VS cell lines and knockdown of ELK4 could rescue the effects made by HCG11 overexpression on progression of VS. Conclusions HCG11 could inhibit the growth of VS by targeting miR-620/ELK4 in VS cells. HCG11 was a novel therapeutic target for VS treatment.
Collapse
Affiliation(s)
- Ruiqing Long
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhuohui Liu
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jinghui Li
- Neurosurgery Department, The First Affiliated Hospital of Kunming Medical University, No. 1 Building, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Yuan Zhang
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hualin Yu
- Neurosurgery Department, The First Affiliated Hospital of Kunming Medical University, No. 1 Building, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
13
|
Wang B, Hua P, Zhao B, Li J, Zhang Y. Circular RNA circDLGAP4 is involved in lung cancer development through modulating microRNA-143/CDK1 axis. Cell Cycle 2020; 19:2007-2017. [PMID: 32646340 DOI: 10.1080/15384101.2020.1786649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate the role of circular RNA DLGAP4 (circDLGAP4) in lung cancer. circDLGAP4 expression was detected in lung cancer tissues and cell lines by PCR. The correlation between circDLGAP4 and clinicopathological characteristics of lung cancer patients was investigated. Moreover, the influences of depression of circDLGAP4 on the biological processes biological processes of lung cancer cells were explored in vitro. In addition, whether circDLGAP4 regulated lung cancer cell biological processes by sponging microRNA-143 (miR-143) to regulate cyclin-dependent kinase 1 (CDK1) expression was explored and verified in another lung cell line. CircDLGAP4 expression was remarkably elevated in lung cancer tissues and was significantly corrected with TNM stage and tumor metastasis. Suppression of circDLGAP4 inhibited the biological performances of lung cancer cells. Also, there was a negative regulatory relationship between circDLGAP4 and miR-143. Inhibition of miR-143 alleviated the influences of circDLGAP4 depression on lung cancer cell biological processes. Moreover, CDK1 was discovered as a target of miR-143, and miR-143 was involved in the process of lung cancer cell biological processes through targeting CDK1. Our findings reveal that circular RNA circDLGAP4 is involved in lung cancer development through modulating microRNA-143/CDK1 axis. circDLGAP4 may serve as a potential biomarker for the diagnosis or treatment of lung cancer.
Collapse
Affiliation(s)
- Bin Wang
- Department of Thoracic Surgery, The Second Hospital of Jilin University , Changchun, Jilin, China
| | - Peiyan Hua
- Department of Thoracic Surgery, The Second Hospital of Jilin University , Changchun, Jilin, China
| | - Bin Zhao
- Department of Neurosurgery, The Second Hospital of Jilin University , Changchun, Jilin, China
| | - Jindong Li
- Department of Thoracic Surgery, The Second Hospital of Jilin University , Changchun, Jilin, China
| | - Yan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University , Changchun, Jilin, China
| |
Collapse
|
14
|
Jia A, Wu Y, Ren W, Han P, Shao Y. Genetic variations of CARMN affect risk of esophageal cancer in northwest China. Gene 2020; 748:144680. [DOI: 10.1016/j.gene.2020.144680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
|
15
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
16
|
Sun J, Yong J, Zhang H. microRNA-93, upregulated in serum of nasopharyngeal carcinoma patients, promotes tumor cell proliferation by targeting PDCD4. Exp Ther Med 2020; 19:2579-2587. [PMID: 32256737 PMCID: PMC7086147 DOI: 10.3892/etm.2020.8520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Deregulation of microRNAs (miRs) has been demonstrated to contribute to the development and malignant progression of nasopharyngeal carcinoma (NPC). Recently, miR-93 was reported to be significantly upregulated in NPC tissues and cell lines, and promote the proliferation, migration and invasion of NPC cells in vitro, as well as tumor growth in vivo. However, whether there is any clinical value of serum miR-93 expression in NPC still remains unclear. Therefore, the present study aimed to explore the clinical significance of serum miR-93 expression in NPC. A total of 85 serum samples from NPC patients and 30 from healthy controls were collected. Reverse transcription-quantitative polymerase chain reaction data demonstrated that the serum expression of miR-93 was significantly increased in NPC patients, when compared with those in healthy controls. Following receiving chemo-radiotherapy, the serum miR-93 levels were significantly decreased in NPC patients. Furthermore, the increased serum levels of miR-93 were significantly associated with advanced grade, clinical stage, lymph node metastasis, as well as worse 5-year overall survival of NPC patients. Furthermore, the serum miR-93 expression was demonstrated to be an independent factor for predicating the prognosis of NPC. In vitro experiments demonstrated that knockdown of miR-93 caused a decrease in NPC cell proliferation, whereas overexpression of miR-93 promoted NPC cell proliferation. PDCD4 was then identified as a direct target of miR-93 in NPC cells. Overexpression of PDCD4 significantly eliminated the promoting effects of miR-93 overexpression on NPC cell proliferation. Taken together, these findings suggest that the serum miR-93 expression could be used as a predicator for the clinical outcome of NPC patients, and suggest that miR-93 may also become a potential therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Jie Sun
- Department of Otolaryngology-Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-Senl University, Shenzhen, Guangdong 518000, P.R. China
| | - Jun Yong
- Department of Otolaryngology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hua Zhang
- Department of Otolaryngology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
17
|
Jin X, Liu X, Zhang Z, Guan Y. lncRNA CCAT1 Acts as a MicroRNA-218 Sponge to Increase Gefitinib Resistance in NSCLC by Targeting HOXA1. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1266-1275. [PMID: 32084702 PMCID: PMC7029377 DOI: 10.1016/j.omtn.2020.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
Abstract
Long non-coding RNA (lncRNA) colon cancer-associated transcript-1 (CCAT1) has been reported to play important roles in the development and progression of multiple human malignancies. However, the functional role and molecular mechanism of CCAT1 on gefitinib resistance in non-small cell lung cancer (NSCLC) are largely unclear. The aim of this study is to explore the roles of CCAT1 on gefitinib resistance in NSCLC and to explore the underlying mechanisms. The quantitative real-time PCR (qRT-PCR) analysis was to investigate the expression pattern of CCAT1 in gefitinib-resistant NSCLC patient tissues and cell lines, and then the effects of CCAT1 on gefitinib resistance of NSCLC in vitro and in vivo. Furthermore, bioinformatics online program predictions and luciferase reporter assay were used to validate the association of CCAT1 and miR-218 in NSCLC cells. In this study, CCAT1 was observed to be upregulated in gefitinib-resistant patient tissues and cell lines. In vitro and in vivo experiments demonstrated that CCAT1 knockdown impaired cell proliferation and promoted the gefitinib-induced cell apoptosis. Furthermore, we demonstrated that CCAT1 acts as a sponge for miR-218, and verified that HOXA1 is a novel target of miR-218. These results suggest that CCAT1 may serve as a promising therapeutic target for the treatment of epidermal growth factor receptor (EGFR) plus NSCLC patients.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Respiration, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiuhua Liu
- Department of Respiration, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhen Zhang
- PICU, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinghui Guan
- Department of Respiration, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Hu M, Zhang Q, Tian XH, Wang JL, Niu YX, Li G. lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol Carcinog 2019; 58:2207-2217. [PMID: 31544294 DOI: 10.1002/mc.23109] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Recent evidence indicates that long noncoding RNA colon cancer-associated transcript-1 (lncRNA CCAT1) is abundantly expressed in esophageal cancer and is closely related to the occurrence, development, invasion, metastasis, and drug resistance of this disease. However, the role and molecular mechanisms of CCAT1 in the cell proliferation and chemoresistance of esophageal cancer are largely unknown. The correlation between CCAT1 expression and drug resistance to cisplatin (CDDP) in esophageal squamous cell carcinoma (ESCC) cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and quantitative real-time polymerase chain reaction (qRT-PCR) assays. CCAT1 knockdown and miR-143 overexpression or inhibition were used to verify the effects on proliferation and drug resistance via MTT, western blotting, flow cytometry, and immunofluorescence assays. qRT-PCR and western blotting were applied to detect the potential regulatory relationship among CCAT1, miR-143, PLK1, and BUBR1. A xenograft tumor assay was performed to validate the role of CCAT1 in vivo. The expression of CCAT1 was positively correlated with drug resistance in several ESCC cell lines. CCAT1 knockdown and miR-143 overexpression inhibited cell proliferation and CDDP drug resistance. Moreover, the downstream target of CCAT1 was found to be miR-143, which can regulate the expression of PLK1 and BUBR1. In vivo assays showed that CCAT1 knockdown suppressed tumor growth and enhanced the sensitivity of tumors to CDDP in nude mice. Taken together, we discovered a novel mechanism by which CCAT1 promotes cell proliferation and enhances drug resistance by regulating the miR-143/PLK1/BUBR1 signaling axis both in vitro and in vivo. Our findings further suggest that lncRNA CCAT1 may be a potential therapeutic target for overcoming chemoresistance in esophageal cancer.
Collapse
Affiliation(s)
- Min Hu
- Department of Clinical Diagnostic Laboratory, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Qi Zhang
- Department of Clinical Diagnostic Laboratory, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xiao-Hui Tian
- Department of Clinical Diagnostic Laboratory, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jin-Lin Wang
- Department of Clinical Diagnostic Laboratory, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Ya-Xuan Niu
- Department of Clinical Diagnostic Laboratory, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Gang Li
- Department of Clinical Diagnostic Laboratory, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
19
|
Wang WT, Guo CQ, Cui GH, Zhao S. Correlation of plasma miR-21 and miR-93 with radiotherapy and chemotherapy efficacy and prognosis in patients with esophageal squamous cell carcinoma. World J Gastroenterol 2019; 25:5604-5618. [PMID: 31602161 PMCID: PMC6785517 DOI: 10.3748/wjg.v25.i37.5604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the main causes of human death. It is usually already in middle or advanced stage when diagnosed due to its hidden symptoms in early stage. Therefore, patients have already lost the best surgical timing when diagnosed. Radiotherapy and chemotherapy are standard treatment methods for ESCC clinically, but the efficacy and prognosis of patients from them are still unsatisfactory. Therefore, it is of great clinical significance to seek for biomarkers that can predict the radiotherapy and chemotherapy response and prognosis of ESCC patients.
AIM To explore the clinical value of plasma miR-21 and miR-93 in ESCC.
METHODS A total of 128 ESCC patients admitted to the First Affiliated Hospital of Zhenzhou University were enrolled as a study group and treated with concurrent radiotherapy and chemotherapy, and other 45 healthy people during the same period were enrolled as a control group. The expression of plasma miR-21 and miR-93 was determined using quantitative real-time polymerase chain reaction, and the correlation of expression of plasma miR-21 and miR-93 with clinical pathological parameters about the patients was analyzed. The receiver operating characteristic (ROC) curve was adopted to assess the diagnostic value of plasma miR-21 and miR-93 for clinical pathological features of ESCC patients, the Logistic regression analysis adopted to analyze the risk factors for radiotherapy and chemotherapy efficacy in ESCC patients, and the Cox regression analysis to identify the prognostic factors for ESCC patients.
RESULTS The study group showed significantly higher relative expression of plasma miR-21 and miR-93 than the control group (P < 0.01). The area under the ROC curve (AUC) of plasma miR-21 for diagnosing T stage, N stage, M stage, and pathological differentiation of ESCC was 0.819, 0.758, 0.824, and 0.725, respectively, and that of plasma miR-93 for diagnosing T stage, N stage, and M stage of ESCC was 0.827, 0.815, and 0.814, respectively. The AUC of combined plasma miR-21 and miR-93 for predicting radiotherapy and chemotherapy efficacy before radiotherapy and chemotherapy was 0.894, and the AUCs of them for predicting the 3-year overall survival (OS) were 0.861 and 0.807, respectively. T stage (P < 0.05), M stage (P < 0.05), miR-21(P < 0.01), and miR-93 (P < 0.05) were independent risk factors for radiotherapy and chemotherapy efficacy, and T stage (P < 0.01), N stage (P < 0.05), M stage (P < 0.01), miR-21 (P < 0.01), and miR-93 (P < 0.01) were independent prognostic factors for ESCC patients.
CONCLUSION MiR-21 and miR-93 can be adopted as effective biomarkers for predicting radiotherapy and chemotherapy efficacy in ESCC and the 3-year OS of ESCC patients.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Chang-Qing Guo
- Digestive Department, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Guang-Hui Cui
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Song Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
20
|
Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. J Transl Med 2019; 99:1442-1453. [PMID: 31217510 DOI: 10.1038/s41374-019-0273-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are post-transcriptional regulators involved in the initiation and progression of many tumors. Recently, naturally occurring circular RNAs (circRNAs) have been described in eukaryotic cells:;they comprise a new class of gene regulators. Naturally occurring circular miR sponges, which induce miR loss-of-function, can prevent endogenous onco-miRs from binding to their cognate mRNA targets. These findings suggest that synthetic (artificial) circular RNAs could be constructed as therapeutic molecular sponges to suppress harmful onco-miRs. Using enzymatic ligation, we designed and constructed a circular RNA containing both miR-21 and miR-93 binding sites. The synthetic circular sponge was resistant to digestion with RNase R. Luciferase assays and functional experiments showed that the circular multi-miR sponge was more stable than its linear counterpart. Moreover, endogenous miR-21 and miR-93 were inhibited by the circular sponge. In addition, the synthetic sponge significantly suppressed cellular proliferation and migration while promoting apoptosis in esophageal carcinoma cells. Finally, in a murine xenograft model, the circular sponge significantly inhibited tumor growth in vivo. Taken together, these findings establish that the design and construction of efficient artificial miR sponges represent a novel strategy to achieve miR loss-of-function in molecular cancer therapeutics.
Collapse
|
21
|
Yang C, Shen S, Zheng X, Ye K, Sun Y, Lu Y, Ge H. Long noncoding RNA HAGLR acts as a microRNA-143-5p sponge to regulate epithelial-mesenchymal transition and metastatic potential in esophageal cancer by regulating LAMP3. FASEB J 2019; 33:10490-10504. [PMID: 31311326 DOI: 10.1096/fj.201802543rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homeobox D gene cluster antisense growth-associated long noncoding RNA (HAGLR) functions as a crucial regulator in the progression and development of human cancers. We analyzed effects of HAGLR, microRNA (miR)-143-5p and lysosome-associated membrane glycoprotein (LAMP)3 on esophageal cancer (EC) and the related mechanisms. Microarray analysis was used to screen out EC-related genes and the regulation network among HAGLR, miR-143-5p, and LAMP3. The regulatory mechanisms of HAGLR and miR-143-5p in EC were analyzed following the treatment of miR-143-5p mimic, miR-143-5p inhibitor, HAGLR vector, or small interfering RNA against HAGLR in EC cells. The expression of N-cadherin, vimentin, Twist1, Snail1, and E-cadherin as well as the abilities of cell proliferation, invasion, and migration were measured. The effects of the HAGLR/miR-143-5p/LAMP3 axis were determined in vivo by assessing tumor formation in nude mice. The expression of HAGLR and LAMP3 was increased, whereas that of miR-143-5p was diminished in EC tissues and cells. HAGLR could competitively bind to miR-143-5p, and miR-143-5p targeted LAMP3. Down-regulated HAGLR or up-regulated miR-143-5p increased E-cadherin expression and significantly diminished expression of LAMP3, N-cadherin, vimentin, Twist1, and Snail1. Moreover, down-regulated HAGLR inhibited cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and tumor growth. Moreover, down-regulation of HAGLR inhibited LAMP3 expression by sponging miR-143-5p, thereby suppressing the progression of EC. Taken together, our results suggest HAGLR acts as a competing endogenous RNA of miR-143-5p to increase the expression of LAMP3, thus promoting EMT, proliferation, invasion, and migration in EC cells.-Yang, C., Shen, S., Zheng, X., Ye, K., Sun, Y., Lu, Y., Ge, H. Long noncoding RNA HAGLR acts as a microRNA-143-5p sponge to regulate epithelial-mesenchymal transition and metastatic potential in esophageal cancer by regulating LAMP3.
Collapse
Affiliation(s)
- Chengliang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Sining Shen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ye
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufei Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Abbaszadegan MR, Keyvani V, Moghbeli M. Genetic and molecular bases of esophageal Cancer among Iranians: an update. Diagn Pathol 2019; 14:97. [PMID: 31470870 PMCID: PMC6717340 DOI: 10.1186/s13000-019-0875-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract Background Esophageal cancer is one of the leading causes of cancer related deaths among the Iranians. There is still a high ratio of mortality and low 5 years survival which are related to the late onset and diagnosis. Majority of patients refer for the treatment in advanced stages of tumor progression. Main body It is required to define an efficient local panel of diagnostic and prognostic markers for the Iranians. Indeed such efficient specific panel of markers will pave the way to decrease the mortality rate and increase the 5 years survival among the Iranian patients via the early diagnosis and targeted therapy. Conclusion in present review we have reported all of the molecular markers in different signaling pathways and cellular processes which have been assessed among the Iranian esophageal cancer patients until now.
Collapse
Affiliation(s)
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Salami H, Mowal SJ, Moukhah R, Hajebrahimi Z, Hosseini SA, Edalat H. Evaluating the Differential Effects of Valproic Acid on Wharton's Jelly Mesenchymal Stem Cells. Adv Pharm Bull 2019; 9:497-504. [PMID: 31592436 PMCID: PMC6773934 DOI: 10.15171/apb.2019.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/31/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: The histone deacetylases (HDAC) inhibitor, valproic acid (VPA), is a common
antiepileptic drug and is attractive for its broad range of therapeutic effects on many diseases. It
has been employed as an inducer of pluripotency in some cultured cells. Conversely, VPA has
also been employed as an inducer of in vitro differentiation in many other cells. Therefore, we
employed WJMSCs as a cellular target to evaluate the differential effects of of VPA on potency
state and differentiation level of Wharton’s Jelly mesenchymal stem cells (WJMSCs) in various
concentrations and different culture mediums.
Methods: The isolated WJMSCs were cultured in DMEM (MSC medium). According to previous
protocols, WJMSCs were treated with 0, 0.5 and 1 mM VPA in MSC or embryonic stem cell (ESC)
medium and 2 mM VPA in neural differentiation medium. Real-time polymerase chain reaction
(PCR) and western blot analysis were performed for evaluating the expression of pluripotency
markers. MTT and caspase assays were also performed on VPA-treated cells.
Results: The expression of pluripotency markers and the viability of the WJMSCs – determined
by MTT assay – were significantly increased after 0.5 mM VPA treatment in ESC medium. A 2
mM VPA treatment in neural differentiation medium significantly diminished the expression of
pluripotency markers and the viability of WJMSCs.
Conclusion: According to our results, both VPA concentration and the medium context can
influence VPA effects on WJMSCs. The differential effects of VPA on WJMSCs can reflect its wide
range of effects in the treatment of various diseases.
Collapse
Affiliation(s)
- Homa Salami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowal
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Moukhah
- Quality assurance Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hajebrahimi
- Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran
| | | | - Houri Edalat
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Du L, Shen K, Bai Y, Chao J, Hu G, Zhang Y, Yao H. Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis. Toxicol Lett 2019; 301:53-63. [PMID: 30394308 DOI: 10.1016/j.toxlet.2018.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Nod-like Receptor Protein 3 (NLRP3) inflammasome activation is known to lead to microglia-mediated neuroinflammation. Methamphetamine is known to induce microglial activation. However, whether NLRP3 inflammasome activation contributes to the microglial activation induced by methamphetamine remains elusive. P53-up-regulated modulator of apoptosis (PUMA) is a known apoptosis inducer; however, their role in microglial activation remains poorly understood. Methamphetamine treatment induced NLRP3 inflammasome activation as well microglial activation in animal model. Intriguingly, downregulation of PUMA significantly inhibited the activation of microglia. Methamphetamine treatment increased the expression of PUMA at protein level but not mRNA level. Further study indicated that PUMA expression was regulated at post-transcriptional level by miR-143, which was decreased in methamphetamine-treated cells via the negative transcription factor nuclear factor-kappa B1 (NF-κB1). Using gain- and loss-of-function approaches, we identified a unique role of miR-143/PUMA in mediating microglial activation via regulation of NLRP3 inflammasome activation. These findings provide new insight regarding the specific contributions of the miR-143/PUMA pathway to NLRP3 inflammasome activation in the context of drug abuse.
Collapse
Affiliation(s)
- Longfei Du
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Kai Shen
- Department of Pharmacology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
25
|
Wang Q, Su C, Li J, Wei C. Mechanism of the enhancing effects of miR-93 on resistance of breast cancer MCF-7 cells to adriamycin. Oncol Lett 2018; 16:3779-3783. [PMID: 30127988 PMCID: PMC6096162 DOI: 10.3892/ol.2018.9054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects of miR-93 on resistance of breast cancer MCF-7 cells to adriamycin, and to explore the possible mechanism. Expression of miR-93 in breast cancer cell lines MCF-7 and MCF-7/ADM was detected by reverse transcription-quantitative PCR (RT-qPCR). miR-93 mimics and inhibitors were transfected into MCF-7/ADM and MCF-7 cells, and MTT assay was used to detect the resistance of cells to adriamycin after transfection. Western blot analysis was used to detect the expression of anti-apoptotic protein Bcl-2 and multidrug resistance gene MDR1 related P-gp protein in MCF-7/ADM and MCF-7 cells before and after the transfection of miR-93 mimics. Expression level of miR-93 in MCF-7/ADM cells was decreased, and was 40% of that in MCF-7 cells (0.39±0.04, p<0.05). Before transfection, IC50 value of MCF-7 cells to adriamycin (11.02±0.95) was lower than that of MCF-7/ADM cells (21.29±1.83, p<0.05). IC50 value of MCF-7/ADR cells at 72 h after transfection with miR-93 mimics (13.55±0.86) was lower than that of the negative control group (24.67±1.51, p<0.05). IC50 value of MCF-7 cells 72 h after transfection with miR-93 inhibitor (19.88±1.28) was higher than that of negative control group (11.02±0.95, p<0.05). Expression levels of Bcl-2 and P-gp proteins in MCF-7/ADM cells were 1.63±0.24 and 1.76±0.22 times that of MCF-7 cells, respectively (p<0.05). At 72 h after transfection of miR-93 mimics, expression levels of Bcl-2 and P-gp proteins in MCF-7/ADM cells were 0.27±0.06 and 0.39±0.05, respectively, compared with the negative control group (p<0.05). At 72 h after transfection with miR-93 inhibitor, expression levels of Bcl-2 and P-gp protein in MCF-7 cells were 1.48±0.10 and 1.56±0.11 times of the negative control group, respectively (p<0.05). miR-93 can increase the apoptosis of MCF-7/ADM cells and their resistance to adriamycin by inhibiting the expression of Bcl-2 and P-gp proteins.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chunying Su
- Department of Pharmacy, Jinan Dermatosis Prevention and Control Hospital, Jinan, Shandong 250000, P.R. China
| | - Jiantao Li
- Department of Pharmacy, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Changsheng Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
26
|
Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 187 cases. Oncotarget 2018; 8:35681-35699. [PMID: 28415685 PMCID: PMC5482608 DOI: 10.18632/oncotarget.16051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most common malignancies worldwide, and its pathogenesis is complex. In this study, we identified differentially expressed miRNAs (DEMs) and genes (DEGs) of ESCA from The Cancer Genome Atlas (TCGA) database. The diagnostic values of DEMs were determined by receiver operating characteristic (ROC) analyses and validated based on data from Gene Expression Omnibus (GEO). The top five DEMs with the best diagnostic values were selected, and their potential targets were predicted by various in silico methods. These target genes were then identified among the DEGs from TCGA. Furthermore, the overlapping genes were subjected to protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The miRNA-transcription factor (TF) regulatory relations were determined using CircuitsDB and TransmiR. Finally, the regulatory networks of miRNA-TF and miRNA-gene were constructed and analyzed. A total of 136 DEMs and 3541 DEGs were identified in ESCA. The top five DEMs with the highest area under the receiver operating characteristic curve (AUC) values were miRNA-93 (0.953), miRNA-21 (0.928), miRNA-4746 (0.915), miRNA-196a-1 (0.906) and miRNA-196a-2 (0.906). The combined AUC of these five DEMs was 0.985. The KEGG analysis with 349 overlapping genes showed that the calcium signaling pathway and the neuroactive ligand-receptor interaction were the most relevant pathways. The regulatory networks of miRNA-TF and miRNA-gene, including 38 miRNA-TF and 560 miRNA-gene pairs, were successfully established. Our findings may provide new insights into the molecular mechanisms of ESCA pathogenesis. Future research will aim to explore the role of novel miRNAs in the pathogenesis and improve the early diagnosis of ESCA.
Collapse
|
27
|
Sharma P, Saraya A, Sharma R. Serum-based six-miRNA signature as a potential marker for EC diagnosis: Comparison with TCGA miRNAseq dataset and identification of miRNA-mRNA target pairs by integrated analysis of TCGA miRNAseq and RNAseq datasets. Asia Pac J Clin Oncol 2018; 14:e289-e301. [PMID: 29380534 DOI: 10.1111/ajco.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022]
Abstract
AIM To evaluate the diagnostic potential of a six microRNAs (miRNAs) panel consisting of miR-21, miR-144, miR-107, miR-342, miR-93 and miR-152 for esophageal cancer (EC) detection. METHODS The expression of miRNAs was analyzed in EC sera samples using quantitative real-time PCR. Risk score analysis was performed and linear regression models were then fitted to generate the six-miRNA panel. In addition, we made an effort to identify significantly dysregulated miRNAs and mRNAs in EC using the Cancer Genome Atlas (TCGA) miRNAseq and RNAseq datasets, respectively. Further, we identified significantly correlated miRNA-mRNA target pairs by integrating TCGA EC miRNAseq dataset with RNAseq dataset. RESULTS The panel of circulating miRNAs showed enhanced sensitivity (87.5%) and specificity (90.48%) in terms of discriminating EC patients from normal subjects (area under the curve [AUC] = 0.968). Pathway enrichment analysis for potential targets of six miRNAs revealed 48 significant (P < 0.05) pathways, viz. pathways in cancer, mRNA surveillance, MAPK, Wnt, mTOR signaling, and so on. The expression data for mRNAs and miRNAs, downloaded from TCGA database, lead to identification of 2309 differentially expressed genes and 189 miRNAs. Gene ontology and pathway enrichment analysis showed that cell-cycle processes were most significantly enriched for differentially expressed mRNA. Integrated analysis of TCGA miRNAseq and RNAseq datasets resulted in identification of 53 063 significantly and negatively correlated miRNA-mRNA pairs. CONCLUSION In summary, a novel and highly sensitive signature of serum miRNAs was identified for EC detection. Moreover, this is the first report identifying miRNA-mRNA target pairs from EC TCGA dataset, thus providing a comprehensive resource for understanding the interactions existing between miRNA and their target mRNAs in EC.
Collapse
Affiliation(s)
- Priyanka Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Science, Ansari Nagar, New Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
28
|
Li L, Zhao J, Huang S, Wang Y, Zhu L, Cao Y, Xiong J, Deng J. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway. Gene 2017; 641:240-247. [PMID: 29045821 DOI: 10.1016/j.gene.2017.09.071] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023]
Abstract
MiR-93-5p has been previously found to be associated with gastric cancer (GC) tumorigenesis; however, the current understanding of its function in this context remains largely incomplete. In the present study, we showed that miR-93-5p was upregulated in GC tissues. We also demonstrated that miR-93-5p overexpression promoted the proliferation, migration, invasion, and chemoresistance of SGC-7901 cells in vitro, and conversely, that endogenously silencing miR-93-5p expression induced the opposite effects in HGC-27 cells. Overexpression of miR-93-5p was found to inactivate the Hippo pathway, and furthermore, miR-93-5p knockdown activated Hippo signaling. MiR-93-5p upregulation was also shown to inhibit the expression of two well-characterized Hippo pathway regulators, protocadherin Fat 4 (FAT4), and large tumor suppressors 2 (LATS2), at both the mRNA and protein level. Additionally, the results of bioinformatics analyses and luciferase reporter assays indicated that miR-93-5p directly targets the 3'-UTR of FAT4 and LATS2. Taken together, these results demonstrate that miR-93-5p promotes GC-cell progression via the inactivation of the Hippo signaling pathway, and thus, represents a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Jianguo Zhao
- Department of Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, PR China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Yi Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Lingling Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China.
| |
Collapse
|
29
|
Liu CM, Liang D, Jin J, Li DJ, Zhang YC, Gao ZY, He YT. Research progress on the relationship between zinc deficiency, related microRNAs, and esophageal carcinoma. Thorac Cancer 2017; 8:549-557. [PMID: 28892299 PMCID: PMC5668500 DOI: 10.1111/1759-7714.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/06/2023] Open
Abstract
Esophageal cancer (EC) is a common malignant tumor of the gastrointestinal tract with a high incidence in China. Zinc (Zn) deficiency is a key risk factor for the occurrence and development of EC and affects progression by regulating microRNA (miRNA, miR) expression. In addition, the dysregulation of miRNAs is accompanied by the dysregulation of their target genes in EC. In this paper, we review the potential molecular mechanisms between Zn deficiency and EC with the aim of providing new strategies and methods for early diagnosis, targeted therapy, and prognostic evaluation.
Collapse
Affiliation(s)
- Cong-Min Liu
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Di Liang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Jing Jin
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Dao-Juan Li
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Ya-Chen Zhang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Zhao-Yu Gao
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Yu-Tong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
30
|
Gong T, Zheng S, Huang S, Fu S, Zhang X, Pan S, Yang T, Sun Y, Wang Y, Hui B, Guo J, Zhang X. PTENP1 inhibits the growth of esophageal squamous cell carcinoma by regulating SOCS6 expression and correlates with disease prognosis. Mol Carcinog 2017; 56:2610-2619. [PMID: 28731203 PMCID: PMC6084318 DOI: 10.1002/mc.22705] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/03/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022]
Abstract
PTEN pseudogene (PTENP1) has a tumor suppressive role in multiple cancers. However, its involvement in esophageal squamous cell carcinoma (ESCC) remains largely unknown. In this study, we set out to identify the role of PTENP1 in the development of ESCC. Gene Expression Omnibus database was employed to investigate the expression of PTENP1 in ESCC. sRNA target Database (StarBase v2.0) was used to query the downstream of PTENP1. Next, both in vitro and in vivo experiments were employed to explore the function. Cell proliferation was evaluated by CCK‐8, soft agar, and colony formation assays. Expression of relative genes was assessed by quantitative real‐time PCR (qRT‐PCR) and Western blotting. 3′UTR luciferase assay was used to confirm the miRNA binding. The clinical significance of PTENP1 was further validated by immunohistochemistry (IHC) and correlation with clinicopathological indicators in additional samples (n = 93). We found expression of PTENP1 in ESCC was lower than that in the corresponding adjacent normal tissues (n = 17). Overexpression of PTENP1 in Eca109 and TE‐1 cells resulted in inhibited proliferation and altered expression of SOCS6‐p‐STAT3‐HIF‐1α pathway both in vitro and in vivo. Subsequent IHC reported a similar trend in human ESCC samples. 3′UTR luciferase assay demonstrated that PTENP1 3′UTR decoyed miR‐17‐5p from binding to SOCS6. Moreover, PTENP1 expression was correlated with clinicopathological indicators to varying degrees, including histological grade, TNM stage, infiltration depth, lymph node metastasis, and overall survival. Taken together, these results suggested an anti‐oncogenic role of PTENP1. Meanwhile, PTENP1 may also serve as a candidate of prognostic indicator for ESCC patients.
Collapse
Affiliation(s)
- Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shuyu Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shan Huang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shenbo Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Xuanwei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shupei Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Tian Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Ya Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Jia Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| |
Collapse
|
31
|
Cui H, Zhang S, Zhou H, Guo L. Direct Downregulation of B-Cell Translocation Gene 3 by microRNA-93 Is Required for Desensitizing Esophageal Cancer to Radiotherapy. Dig Dis Sci 2017; 62:1995-2003. [PMID: 28434073 DOI: 10.1007/s10620-017-4579-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Esophageal squamous carcinoma (ESC) is one of the most fatal malignancies worldwide with increasing occurrences yet poor outcome. MicroRNAs were reported to play roles in ESC. AIMS We aimed to understand how miRNAs affect the radiotherapy resistance of ESC. METHODS MicroRNA assays, real-time PCR, and Western blot were performed for expression analysis of miR-93 and BTG3. Luciferase activity assay was conducted with mutated B-cell translocation gene 3 (BTG3) 3'-UTR sequence in the 3' end of luciferase sequence with miR-93 inhibitor. ESC cells were treated with irradiation (IR) and clonogenic assay was utilized to detect the cell viability. Human ESC xenograft mouse model was established and subjected to target IR treatment followed by tumor size analysis. RESULTS MiR-93 was decreased and BTG3 was increased in ESC cells, with negative correlation of their expression in ESC tissues. MiR-93 directly targeted BTG3 3'-UTR by luciferase activity assay. Either miR-93 inhibition or BTG3 overexpression decreased radiation resistance. Furthermore, miR-93 inhibition suppressed radiation resistance through BTG3. CONCLUSIONS Direct downregulation of BTG3 by miR-93 is able to render ESC resistant to radiotherapy, and both BTG3 and miR-93 may potentially serve as clinical markers for ESC and contribute to the treatment of ESC.
Collapse
Affiliation(s)
- Hujun Cui
- Department of Oncology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shengqiang Zhang
- Department of Thoracic Surgery, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hongbo Zhou
- Department of Oncology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ling Guo
- Department of Pathology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, 157009, China.
| |
Collapse
|
32
|
He Y, Yu B. MicroRNA-93 promotes cell proliferation by directly targeting P21 in osteosarcoma cells. Exp Ther Med 2017; 13:2003-2011. [PMID: 28565800 PMCID: PMC5443279 DOI: 10.3892/etm.2017.4204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/23/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are key regulators of gene expression by directly binding to the 3'-untranslated region of their target mRNAs, resulting in translational repression or degradation of mRNA. It has been demonstrated that miRNAs have key roles in a variety of human malignancies, including osteosarcoma. The present study aimed to assess the molecular mechanism of miR-93 in the regulation of osteosarcoma cell proliferation. Reverse-transcription quantitative PCR and western blot assays were used to examine mRNA and protein expression. An MTT assay and flow cytometry were performed to determine the cell proliferation and cell cycle distribution. A luciferase reporter assay was performed to confirm the direct targeting of cyclin-dependent kinase inhibitor 1A (CDKN1A), also known as P21, by miR-93, which was suggested by a bioinformatics analysis. The results showed that the expression of miR-93 was frequently and significantly increased in a total of 19 osteosarcoma tissues compared to their matched adjacent non-tumor tissues, and the upregulation of miR-93 was associated with the malignant progression of osteosarcoma. Furthermore, miR-93 was also upregulated in the human osteosarcoma cell lines Saos-2, U2OS, SW1353 and MG63 when compared with that in the human osteoblast cell line hFOB1.19. Transfection with miR-93 inhibitor significantly reduced the miR-93 levels and inhibited the proliferation of U2OS and MG63 osteosarcoma cells. The protein levels of P21 were negatively regulated by miR-93 in U2OS and MG63 cells. Knockdown of miR-93 caused cell cycle arrest at G1 stage in U2OS and MG63 cells, identical to the effect of P21 overexpression. Finally, P21 was found to be significantly downregulated in osteosarcoma tissues compared to their matched adjacent non-tumor tissues, suggesting that the inhibition of P21 may be due to increased miR-93 expression in osteosarcoma tissues. In conclusion, the present study demonstrated that miR-93 enhances the proliferation of osteosarcoma cells, at least in part via inhibiting P21 expression and thus promoting cell cycle progression.
Collapse
Affiliation(s)
- Yu He
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bo Yu
- Department of Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
33
|
Jin L, Yi J, Gao Y, Han S, He Z, Chen L, Song H. MiR-630 inhibits invasion and metastasis in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2016; 48:810-9. [PMID: 27563011 DOI: 10.1093/abbs/gmw073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive malignancies and has a high incidence in China. MicroRNAs (miRNAs) are small endogenous RNAs that regulate multiple tumorigenic processes, including proliferation, invasion, metastasis and prognosis. Using miRNA expression profiling analysis, we found that miR-630 was markedly down-regulated in three ESCC tissue samples compared with that in paired normal esophageal tissues. Differential miR-630 expression was subsequently confirmed using quantitative real-time PCR. To determine whether miR-630 down-regulation could be considered as a diagnostic indicator and adverse prognostic factor, we investigated the association between miR-630 and clinicopathological characteristics in patients with ESCC. It was found that decreased miR-630 expression was associated with poor overall survival in these patients. In addition, we also explored the biological function of miR-630 by targeting Slug and investigated the correlation between miR-630 expression and epithelial-mesenchymal transition (EMT) progression in vivo and in vitro Ectopic miR-630 expression could inhibit proliferation, invasion and metastasis, whereas miR-630 knockdown induced proliferation, invasion, metastasis and EMT traits. Overall, our study supports a role for miR-630 as a critical novel modulator in ESCC.
Collapse
Affiliation(s)
- Li Jin
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Yanping Gao
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Zhenyue He
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
34
|
Okumura T, Kojima H, Miwa T, Sekine S, Hashimoto I, Hojo S, Nagata T, Shimada Y. The expression of microRNA 574-3p as a predictor of postoperative outcome in patients with esophageal squamous cell carcinoma. World J Surg Oncol 2016; 14:228. [PMID: 27565418 PMCID: PMC5002115 DOI: 10.1186/s12957-016-0985-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite advances in radical esophagectomies and adjuvant therapy, the postoperative prognosis in esophageal squamous cell carcinoma (ESCC) patients remains poor. The aim of this study was to identify a molecular signature to predict postoperative favorable outcomes in patients with ESCC. METHODS As a training data set, total RNA was extracted from formalin-fixed paraffin-embedded samples of surgically removed specimens from 19 ESCC patients who underwent curative esophagectomy. The expression of microRNA (miRNA) was detected using a miRNA oligo chip on which 885 genes were mounted. As a validation data set, we obtained frozen samples of surgically resected tumors from 12 independent ESCC patients and the expression of miR-574-3p was detected by quantitative real-time PCR. RESULTS Our microarray analysis in the training set patients identified three miRNAs (miR-574-3p, miR-106b, and miR-1303) and five miRNAs (miR-1203, miR-1909, miR-204, miR-371-3p, miR-886-3p) which were differentially expressed between the patients with (n = 14) and without (n = 5) postoperative tumor relapse (p < 0.01 and p < 0.05, respectively). Higher expression of miR-574-3p, which showed the most significant association with non-relapse (p = 0.001), was associated with favorable overall survival (p = 0.016). Real-time PCR experiments on the validation set patients confirmed that higher expression of miR-574-3p was associated with non-tumor relapse (p = 0.029) and better overall survival (p = 0.004). CONCLUSIONS Our results suggest that the aberrant expression of the miRNAs identified in this study plays key roles in the progression of ESCC. miR-574-3p was suggested to have a tumor suppressor effect, and thus, to be a predictor of postoperative outcome in patients with ESCC.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Hirohumi Kojima
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Takeshi Miwa
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Shinichi Sekine
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Isaya Hashimoto
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Shozo Hojo
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Yutaka Shimada
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Zhang B, Li R, Chang CX, Han Y, Shi SB, Tian J. Pemetrexed plus dendritic cells as third-line therapy for metastatic esophageal squamous cell carcinoma. Onco Targets Ther 2016; 9:3901-6. [PMID: 27418834 PMCID: PMC4935028 DOI: 10.2147/ott.s107319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to evaluate the toxicity and efficacy of pemetrexed plus dendritic cells (DCs) when administered as third-line treatment for metastatic esophageal squamous cell carcinoma (ESCC). All patients in the study group had previously failed first-line treatment with 5-fluorouracil and cisplatin-based regimens, as well as second-line treatment with taxane-based regimens. A total of 31 patients were treated with pemetrexed (500 mg/m2) plus DCs on day 1, every 3 weeks. DCs were given for one cycle of 21 days. Thirty patients were evaluated for their response. No patient had a complete response, three patients (10.0%) had a partial response, ten patients (33.3%) had stable disease, and 17 patients (56.7%) had progressive disease. The overall response rate was 10.0%. The median progression-free survival (PFS) time was 2.9 months (95% CI, 2.7–3.2), and the median overall survival (OS) time was 7.1 months (95% CI, 6.4–7.9). The median PFS and OS times among patients with high and low levels of miR-143 expression in their blood serum were significantly different: median PFS times =3.2 months (95% CI, 2.9–3.4) and 2.7 months (95% CI, 2.4–3.0), respectively (P=0.017), and median OS times =7.8 months (95% CI, 6.8–8.9) and 6.3 months (95% CI, 5.3–7.3), respectively (P=0.036). No patient experienced Grade 4 toxicity. Combined third-line treatment with pemetrexed and DCs was marginally effective and well tolerated in patients with advanced ESCC. Serum miR-143 levels are a potential biomarker for predicting the efficacy of pemetrexed plus DCs in the treatment of ESCC.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Medical Oncology, Shandong Ji Ning First People's Hospital
| | - Rui Li
- Department of Medical Oncology, Shandong Cancer Hospital, Shandong University, Shandong; Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Chun-Xiao Chang
- Department of Medical Oncology, Shandong Cancer Hospital, Shandong University, Shandong; Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yong Han
- Department of Medical Oncology, Shandong Cancer Hospital, Shandong University, Shandong; Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Sheng-Bin Shi
- Department of Medical Oncology, Shandong Cancer Hospital, Shandong University, Shandong; Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Jing Tian
- Department of Medical Oncology, Shandong Cancer Hospital, Shandong University, Shandong; Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| |
Collapse
|