1
|
Xu J, Wang Y, Ren L, Li P, Liu P. IGF2BP1 promotes multiple myeloma with chromosome 1q gain via increasing CDC5L expression in an m 6A-dependent manner. Genes Dis 2025; 12:101214. [PMID: 39534570 PMCID: PMC11554607 DOI: 10.1016/j.gendis.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 11/16/2024] Open
Abstract
Multiple myeloma (MM) patients with chromosome 1q gain (1q+) are clinically and biologically heterogeneous. The underlying molecular mechanisms are still under investigation, while the identification of targets for effective therapy of this subgroup of MM patients is urgently needed. We aimed to investigate the clinical significance and the regulatory mechanisms of insulin-like growth factor 2 messenger RNA (mRNA) binding protein 1 (IGF2BP1), a N6-methyladenosine (m6A) reader, in MM patients with 1q+. We found that MM patients with 1q+ exhibit a significantly higher level of IGF2BP1 mRNA than controls, while higher IGF2BP1 expression predicted a worse prognosis in MM patients with 1q+. IGF2BP1 overexpression promoted cell proliferation and G1-to-S phase transition of the cell cycle in NCI-H929 cells. Through comprehensive in silico analyses of existing public datasets and in-house generated high-throughput sequencing datasets, along with in vitro experiments, we identified CDC5L as a target of IGFBP1, which can bind to the m6A sites of CDC5L mRNA to up-regulate its protein abundance. Higher CDC5L expression also predicted a worse prognosis of MM patients with 1q+. Moreover, both knockdown and mutation of CDC5L attenuated the pro-proliferative effect of IGF2BP1. Furthermore, IGF2BP1 inhibitor BTYNB effectively inhibited CDC5L expression in MM cells with 1q+ and suppressed the proliferation of these cells in vitro and in vivo. Therefore, IGF2BP1 acts as a post-transcriptional enhancer of CDC5L in an m6A-dependent manner to promote the proliferation of MM cells with 1q+. Our work identified a novel IGF2BP1-CDC5L axis and provided new insight into developing targeted therapeutics for MM patients with 1q+.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yawen Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Liang Ren
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Panpan Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
2
|
Alsagaby SA. Biological roles of THRAP3, STMN1 and GNA13 in human blood cancer cells. 3 Biotech 2024; 14:248. [PMID: 39345963 PMCID: PMC11424602 DOI: 10.1007/s13205-024-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Blood cancers, such as diffuse large B-cell lymphoma (DLBCL), Burkitt's lymphoma (BL) and acute myeloid leukemia (AML), are aggressive neoplasms that are characterized by undesired clinical courses with dismal survival rates. The objective of the current work is to study the expression THRAP3, STMN1 and GNA13 in DLBCL, BL and AML, and to investigate if these proteins are implicated in the prognosis and progression of the blood cancers. Isolation of normal blood cells was performed using lymphoprep coupled with gradient centrifugation and magnetic beads. Flow-cytometric analysis showed high quality of the isolated cells. Western blotting identified THRAP3, STMN1 and GNA13 to be overexpressed in the blood cancer cells but hardly detected in normal blood cells from healthy donors. Consistently, investigations performed using genotype-tissue expression (GTEx) and gene expression profiling interactive analysis (GEPIA) showed that the three proteins had higher mRNA expression in various cancers compared with matched normal tissues (p ≤ 0.01). Furthermore, the up-regulated transcript expression of these proteins was a feature of short overall survival (OS; p ≤ 0.02) in patients with the blood cancers. Interestingly, functional profiling using gProfiler and protein-protein interaction network analysis using STRING with cytoscape reported THRAP3 to be associated with cancer-dependent proliferation and survival pathways (corrected p ≤ 0.05) and to interact with proteins (p = 1 × 10-16) implicated in tumourigenesis and chemotherapy resistance. Taken together, these findings indicated a possible implication of THRAP3, STMN1 and GNA13 in the progression and prognosis of the blood cancers. Additional work using clinical samples of the blood cancers is required to further investigate and validate the results reported here. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04093-5.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11932 Saudi Arabia
| |
Collapse
|
3
|
Yu N, Wu Y, Wei Q, Li X, Li M, Wu W. m 6A modification of CDC5L promotes lung adenocarcinoma progression through transcriptionally regulating WNT7B expression. Am J Cancer Res 2024; 14:3565-3583. [PMID: 39113868 PMCID: PMC11301290 DOI: 10.62347/qhfa9669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cell division cycle 5-like (CDC5L) protein is implicated in the development of various cancers. However, its role in the progression of lung adenocarcinoma (LUAD) remains uncertain. Our findings revealed frequent upregulation of CDC5L in LUAD, which correlated with poorer overall survival rates and advanced clinical stages. In vitro experiments demonstrated that CDC5L overexpression stimulated the proliferation, migration, and invasion of LUAD cells, whereas CDC5L knockdown exerted suppressive effects on these cellular processes. Furthermore, silencing CDC5L significantly inhibited tumor growth and metastasis in a xenograft mouse model. Mechanistically, CDC5L activates the Wnt/β-catenin signaling pathway by transcriptionally regulating WNT7B, thereby promoting LUAD progression. Besides, METTL14-mediated m6A modification contributed to CDC5L upregulation in an IGF2BP2-dependent manner. Collectively, our study uncovers a novel molecular mechanism by which the m6A-induced CDC5L functions as an oncogene in LUAD by activating the Wnt/β-catenin pathway through transcriptional regulation of WNT7B, suggesting that CDC5L may serve as a promising prognostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Nanding Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Yingxiao Wu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Qiongying Wei
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Xiaoping Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Mengling Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Weidong Wu
- Department of Thoracic Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical UniversityFuzhou 350122, Fujian, China
| |
Collapse
|
4
|
Alshahrany N, Begum A, Siebzehnrubl D, Jimenez-Pascual A, Siebzehnrubl FA. Spatial distribution and functional relevance of FGFR1 and FGFR2 expression for glioblastoma tumor invasion. Cancer Lett 2023; 571:216349. [PMID: 37579831 PMCID: PMC10840508 DOI: 10.1016/j.canlet.2023.216349] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Glioblastoma is the most lethal brain cancer in adults. These incurable tumors are characterized by profound heterogeneity, therapy resistance, and diffuse infiltration. These traits have been linked to cancer stem cells, which are important for glioblastoma tumor progression and recurrence. The fibroblast growth factor receptor 1 (FGFR1) signaling pathway is a known regulator of therapy resistance and cancer stemness in glioblastoma. FGFR1 expression shows intertumoral heterogeneity and higher FGFR1 expression is associated with a significantly poorer survival in glioblastoma patients. The role of FGFR1 in tumor invasion has been studied in many cancers, but whether and how FGFR1 mediates glioblastoma invasion remains to be determined. Here, we investigated the distribution and functional relevance of FGFR1 and FGFR2 in human glioblastoma xenograft models. We found FGFR1, but not FGFR2, expressed in invasive glioblastoma cells. Loss of FGFR1, but not FGFR2, significantly reduced cell migration in vitro and tumor invasion in human glioblastoma xenografts. Comparative analysis of RNA-sequencing data of FGFR1 and FGFR2 knockdown glioblastoma cells revealed a FGFR1-specific gene regulatory network associated with tumor invasion. Our study reveals new gene candidates linked to FGFR1-mediated glioblastoma invasion.
Collapse
Affiliation(s)
- Nawal Alshahrany
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom; Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff, CF10 3NB, United Kingdom
| | - Ayesha Begum
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom
| | - Dorit Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom
| | - Ana Jimenez-Pascual
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom
| | - Florian A Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom.
| |
Collapse
|
5
|
Wang T, Zhao X, Liu T, Zhang J, Qiu J, Li M, Weng R. Transcriptional investigation of the toxic mechanisms of perfluorooctane sulfonate in rats based on an RNA-Seq approach. CHEMOSPHERE 2023; 329:138629. [PMID: 37030344 DOI: 10.1016/j.chemosphere.2023.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Perfluorooctane sulfonate (PFOS) was widely used in industrial applications before it was listed as a persistent organic pollutant by the Conference of the Parties in the Stockholm Convention in 2009. Although the potential toxicity of PFOS has been studied, its toxic mechanisms remain largely undefined. Here, we investigated novel hub genes and pathways affected by PFOS to gain new conceptions of the toxic mechanisms of PFOS. Reduced body weight gain and abnormal ultra-structures in the liver and kidney tissues were spotted in PFOS-exposed rats, indicating successful establishment of the PFOS-exposed rat model. The transcriptomic alterations of blood samples upon PFOS exposure were analysed using RNA-Seq. GO analysis indicates that the differentially expressed gene-enriched GO terms are related to metabolism, cellular processes, and biological regulation. Kyoto encyclopaedia of gene and genomes (KEGG) and gene set enrichment analysis (GSEA) were conducted to identify six key pathways: spliceosome, B cell receptor signalling pathway, acute myeloid leukaemia, protein processing in the endoplasmic reticulum, NF-kappa B signalling pathway, and Fc gamma R-mediated phagocytosis. The top 10 hub genes were screened from a protein-protein interaction network and verified via quantitative real-time polymerase chain reaction. The overall pathway network and hub genes may provide new insights into the toxic mechanisms of PFOS exposure states.
Collapse
Affiliation(s)
- Tianrun Wang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xuying Zhao
- Key Laboratory of Quality and Risk Assessment for Tobacco and Aromatic Plant Products (Qingdao) of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Tianze Liu
- Key Laboratory of Quality and Risk Assessment for Tobacco and Aromatic Plant Products (Qingdao) of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Jiguang Zhang
- Key Laboratory of Quality and Risk Assessment for Tobacco and Aromatic Plant Products (Qingdao) of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Jing Qiu
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Rui Weng
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Montero-Hidalgo AJ, Pérez-Gómez JM, Martínez-Fuentes AJ, Gómez-Gómez E, Gahete MD, Jiménez-Vacas JM, Luque RM. Alternative splicing in bladder cancer: potential strategies for cancer diagnosis, prognosis, and treatment. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1760. [PMID: 36063028 DOI: 10.1002/wrna.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bladder cancer is the most common malignancy of the urinary tract worldwide. The therapeutic options to tackle this disease comprise surgery, intravesical or systemic chemotherapy, and immunotherapy. Unfortunately, a wide number of patients ultimately become resistant to these treatments and develop aggressive metastatic disease, presenting a poor prognosis. Therefore, the identification of novel therapeutic approaches to tackle this devastating pathology is urgently needed. However, a significant limitation is that the progression and drug response of bladder cancer is strongly associated with its intrinsic molecular heterogeneity. In this sense, RNA splicing is recently gaining importance as a critical hallmark of cancer since can have a significant clinical value. In fact, a profound dysregulation of the splicing process has been reported in bladder cancer, especially in the expression of certain key splicing variants and circular RNAs with a potential clinical value as diagnostic/prognostic biomarkers or therapeutic targets in this pathology. Indeed, some authors have already evidenced a profound antitumor effect by targeting some splicing factors (e.g., PTBP1), mRNA splicing variants (e.g., PKM2, HYAL4-v1), and circular RNAs (e.g., circITCH, circMYLK), which illustrates new possibilities to significantly improve the management of this pathology. This review represents the first detailed overview of the splicing process and its alterations in bladder cancer, and highlights opportunities for the development of novel diagnostic/prognostic biomarkers and their clinical potential for the treatment of this devastating cancer type. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Urology Service, HURS/IMIBIC, Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| |
Collapse
|
7
|
Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. Int J Mol Sci 2023; 24:ijms24021411. [PMID: 36674927 PMCID: PMC9866115 DOI: 10.3390/ijms24021411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Studies on tumor-associated antigens in brain tumors are sparse. There is scope for enhancing our understanding of molecular pathology, in order to improve on existing forms, and discover new forms, of treatment, which could be particularly relevant to immuno-oncological strategies. To elucidate immunological differences, and to provide another level of biological information, we performed antibody profiling, based on a high-density protein array (containing 8173 human transcripts), using IgG isolated from the sera of n = 12 preoperative and n = 16 postoperative glioblastomas, n = 26 preoperative and n = 29 postoperative meningiomas, and n = 27 healthy, cancer-free controls. Differentially reactive antigens were compared to gene expression data from an alternate public GBM data set from OncoDB, and were analyzed using the Reactome pathway browser. Protein array analysis identified approximately 350-800 differentially reactive antigens, and revealed different antigen profiles in the glioblastomas and meningiomas, with approximately 20-30%-similar and 10-15%-similar antigens in preoperative and postoperative sera, respectively. Seroreactivity did not correlate with OncoDB-derived gene expression. Antigens in the preoperative glioblastoma sera were enriched for signaling pathways, such as signaling by Rho-GTPases, COPI-mediated anterograde transport and vesicle-mediated transport, while the infectious disease, SRP-dependent membrane targeting cotranslational proteins were enriched in the meningiomas. The pre-vs. postoperative seroreactivity in the glioblastomas was enriched for antigens, e.g., platelet degranulation and metabolism of lipid pathways; in the meningiomas, the antigens were enriched in infectious diseases, metabolism of amino acids and derivatives, and cell cycle. Antibody profiling in both tumor entities elucidated several hundred antigens and characteristic signaling pathways that may provide new insights into molecular pathology and may be of interest for the development of new treatment strategies.
Collapse
|
8
|
Kumari NS, Ashwini K, Gollapalli P, Shetty S, Raghotham A, Shetty P, Shetty J. Gene enrichment analysis and protein–protein interaction network topology delineates S-Phase kinase-associated protein 1 and catenin beta-1 as potential signature genes linked to glioblastoma prognosis. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_344_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
9
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
11
|
Zhan J, Wu S, Zhao X, Jing J. A Novel DNA Damage Repair-Related Gene Signature for Predicting Glioma Prognosis. Int J Gen Med 2022; 14:10083-10101. [PMID: 34992431 PMCID: PMC8711246 DOI: 10.2147/ijgm.s343839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background Glioma is one of the most prevalent tumors in the central nervous system of adults and shows a poor prognosis. This study aimed to develop a DNA damage repair (DDR)-related gene signature to evaluate the prognosis of glioma patients. Methods Differentially expressed genes (DEGs) were extracted based on 276 DDR genes. Then, a gene signature was developed for the survival prediction in glioma patients by means of univariate, multivariate Cox, and least absolute shrinkage and selector operation (Lasso) analyses. After analyzing the clinical parameters, a nomogram was constructed and assessed. A total of 693 gliomas from the Chinese Glioma Genome Atlas (CGGA) were used for external validation. In addition, we used glioma tumor tissues for qPCR experiment to verify. Results A 12-DDR-related gene signature was identified from the 75 DEGs to stratify the survival risk of glioma patients. The overall survival of high-risk group was significantly shorter than that of low-risk group (P < 0.001). Besides, according to the risk score assessment, patients in high- or low-risk group also had significant correlations with clinicopathological parameters, including age (P < 0.01), grade (P < 0.001), IDH status (P < 0.001) and 1p19q codeletion status (P < 0.001). The nomogram provided favorable C-index and calibration plots. The C-index of training set and verification set was 0.761 and 0.746, respectively, and the calibration curve also showed that both training set and verification set were close to the standard curve. The qPCR results showed that there were significant differences in the expression of some typical DDR-related genes in tumor tissues and paracancer tissues (P(WEE1)=0.0002, P(RECQL)=0.0117, P(RPA1)=0.021, P(RRM1)=0.0035, P(PARP4)=0.0006, P(ELOA)=0.0023). Conclusion Our study developed a novel 12 DDR-related gene signature as a practical prognostic predictor for glioma patients. A nomogram combining the signature and clinical parameters was established as an individual clinical prediction tool.
Collapse
Affiliation(s)
- Jiaoyang Zhan
- Department of Anorectal Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shuang Wu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, People's Republic of China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, Liaoning, People's Republic of China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Wang K, Li B, Fan P, Ren X, Jiang H. Downregulation of DEAD-box helicase 21 (DDX21) inhibits proliferation, cell cycle, and tumor growth in colorectal cancer via targeting cell division cycle 5-like (CDC5L). Bioengineered 2021; 12:12647-12658. [PMID: 34903139 PMCID: PMC8810101 DOI: 10.1080/21655979.2021.2011636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/30/2022] Open
Abstract
Identification of novel anti-tumor target is crucial for cancer diagnosis, prognosis, and therapeutic strategy. The study aimed to explore the roles and interaction of DEAD-box helicase 21 (DDX21) and cell division cycle 5-like (CDC5L) in colorectal cancer (CRC) progression. Levels of DDX21 and CDC5L were detected in colorectal cancer cell lines by RT-qPCR and Western blot assay. The role of DDX21 and CDC5L on the cell proliferation, cell cycle and tumor growth were evaluated both in vitro and in vivo. The interaction of DDX21 and CDC5L was predicted by The STRING publicly available data and verified by immunoprecipitation. The results showed that DDX21 was dramatically upregulated in colorectal cancer cells. In vivo and in vitro experiments revealed that downregulation of DDX21 suppressed colorectal cancer cell proliferation, colony formation, cell cycle development, and tumor growth, while overexpression of CDC5L reversed the suppressive effects of DDX21 silencing. Furthermore, DDX21 interacted with CDC5L to exert the tumor-promoting effects in CRC. In summary, the data indicate a novel role for DDX21/CDC5L in the development of CRC, which enrich the therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Baosong Li
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Peng Fan
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Xiang Ren
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Hong Jiang
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
13
|
Zhang HY, Li J, Ouyang YC, Meng TG, Zhang CH, Yue W, Sun QY, Qian WP. Cell Division Cycle 5-Like Regulates Metaphase-to-Anaphase Transition in Meiotic Oocyte. Front Cell Dev Biol 2021; 9:671685. [PMID: 34277613 PMCID: PMC8282184 DOI: 10.3389/fcell.2021.671685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The quality of oocytes is a vital factor for embryo development. Meiotic progression through metaphase I usually takes a relatively long time to ensure correct chromosome separation, a process that is critical for determining oocyte quality. Here, we report that cell division cycle 5-like (Cdc5L) plays a critical role in regulating metaphase-to-anaphase I transition during mouse oocyte meiotic maturation. Knockdown of Cdc5L by small interfering RNA injection did not affect spindle assembly but caused metaphase I arrest and subsequent reduced first polar body extrusion due to insufficient anaphase-promoting complex/cyclosome activity. We further showed that Cdc5L could also directly interact with securin, and Cdc5L knockdown led to a continuous high expression level of securin, causing severely compromised meiotic progression. The metaphase-to-anaphase I arrest caused by Cdc5L knockdown could be rescued by knockdown of endogenous securin. In summary, we reveal a novel role for Cdc5L in regulating mouse oocyte meiotic progression by interacting with securin.
Collapse
Affiliation(s)
- Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
Wu B, Yang W, Fu Z, Xie H, Guo Z, Liu D, Ge J, Zhong S, Liu L, Liu J, Zhu D. Selected using bioinformatics and molecular docking analyses, PHA-793887 is effective against osteosarcoma. Aging (Albany NY) 2021; 13:16425-16444. [PMID: 34156352 PMCID: PMC8266349 DOI: 10.18632/aging.203165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
To identify novel prognostic and therapeutic targets for osteosarcoma patients, we compared the gene expression profiles of osteosarcoma and control tissues from the GSE42352 dataset in the Gene Expression Omnibus. Differentially expressed genes were subjected to Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment and protein-protein interaction network analyses. Survival curve analyses indicated that osteosarcoma patients with lower mRNA levels of cyclin-dependent kinase 1 (CDK1) and topoisomerase II alpha had better prognoses. Various computer-aided techniques were used to identify potential CDK1 inhibitors for osteosarcoma patients, and PHA-793887 was predicted to be a safe drug with a high binding affinity for CDK1. In vitro, MTT and colony formation assays demonstrated that PHA-793887 reduced the viability and clonogenicity of osteosarcoma cells, while a scratch assay suggested that PHA-793887 impaired the migration of these cells. Flow cytometry experiments revealed that PHA-793887 dose-dependently induced apoptosis in osteosarcoma cells. Western blotting and enzyme-linked immunosorbent assays indicated that CDK1 expression in osteosarcoma cells declined with increasing PHA-793887 concentrations. These results suggest that PHA-793887 could be a promising new treatment for osteosarcoma.
Collapse
Affiliation(s)
- Bo Wu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Zhaoyu Fu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| | - Haoqun Xie
- Clinical College, Jilin University, Changchun, China
| | - Zhen Guo
- Clinical College, Jilin University, Changchun, China
| | - Daqun Liu
- Department of Liver and Gallbladder Surgery, The First Hospital of Jilin University, Changchun, China
| | - Junliang Ge
- Clinical College, Jilin University, Changchun, China
| | - Sheng Zhong
- Department of Neurosurgery, Cancer Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luwei Liu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jingyi Liu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Dong Zhu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Liu H, Guo D, Sha Y, Zhang C, Jiang Y, Hong L, Zhang J, Jiang Y, Lu L, Huang H. ANXA7 promotes the cell cycle, proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells by up-regulating CDC5L. Aging (Albany NY) 2020; 12:11100-11115. [PMID: 32526706 PMCID: PMC7346058 DOI: 10.18632/aging.103326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate whether annexin A7 (ANXA7) could promote the cell cycle, proliferation and cell adhesion-mediated drug resistance (CAM-DR) of multiple myeloma (MM) cells by up-regulating cell division cycle 5-like (CDC5L). As a result, ANXA7 expression was increased in the serum of MM patients and the expression of ANXA7 and CDC5L was also increased in MM cell lines. ANXA7 overexpression promoted the proliferation and cycle of U266 and RPMI8226 cells. The expression of proliferation cell nuclear antigen (PCNA), KI67, cyclin dependent kinase 1 (CDK1) and cyclinB1 in transfected cells was consistent with the changes of proliferation and cell cycle. In co-culture system of BMSC cells and MM cells, expression of CD44, ICAM1 and VCAM1 in MM cells was increased, which was further increased by ANXA7 overexpression. Bortezomib could increase the apoptosis of U266 and RPMI8226 cells. In co-culture system of BMSC cells and MM cells, the promotion effects of bortezomib on apoptosis of MM cells was decreased, which was further suppressed by ANXA7 overexpression. The above effects exerted by ANXA7 overexpression could be reversed by ANXA7 interference. Moreover, ANXA7 was proved to be combined with CDC5L. CDC5L interference could inhibit the promotion effects of ANXA7 overexpression on proliferation and cell cycle and inhibition effects of ANXA7 overexpression on apoptosis of MM cells treated with bortezomib in co-culture system. In conclusion, ANXA7 could promote the cell cycle, proliferation and CAM-DR of MM cells by up-regulating CDC5L.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Dan Guo
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuou Sha
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenlu Zhang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yijing Jiang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lemin Hong
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jie Zhang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuwen Jiang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ling Lu
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
16
|
Expression Profiles of Long Noncoding RNAs in Intranasal LPS-Mediated Alzheimer's Disease Model in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9642589. [PMID: 30809552 PMCID: PMC6369469 DOI: 10.1155/2019/9642589] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/23/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), characterized by memory loss, cognitive decline, and dementia, is a progressive neurodegenerative disease. Although the long noncoding RNAs (lncRNAs) have recently been identified to play a role in the pathogenesis of AD, the specific effects of lncRNAs in AD remain unclear. In present study, we have investigated the expression profiles of lncRNAs in hippocampal of intranasal LPS-mediated Alzheimer's disease models in mice by microarray method. A total of 395 lncRNAs and 123 mRNAs was detected to express differently in AD models and controls (>2.0 folds, p<0.05). The microarray expression was validated by Quantitative Real-Time-PCR (qRT-PCR). The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in inflammation, apoptosis, and nervous system related pathways. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by HMGA2, ONECUT2, FOXO1, and CDC5L. Additionally, lncRNA-target-TFs network analysis indicated the FOXL1, CDC5L, ONECUT2, and CDX1 to be the TFs most likely to regulate the production of these lncRNAs. This is the first study to investigate lncRNAs expression pattern in intranasal LPS-mediated Alzheimer's disease model in mice. And these results may facilitate the understanding of the pathogenesis of AD targeting lncRNAs.
Collapse
|
17
|
Gao YF, Mao XY, Zhu T, Mao CX, Liu ZX, Wang ZB, Li L, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. COL3A1 and SNAP91: novel glioblastoma markers with diagnostic and prognostic value. Oncotarget 2018; 7:70494-70503. [PMID: 27655637 PMCID: PMC5342568 DOI: 10.18632/oncotarget.12038] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023] Open
Abstract
Although patients with glioblastoma (GBM) have grave prognosis, significant variability in patient outcome is observed. This study aims to identify novel targets for GBM diagnosis and therapy. Microarray data (GSE4290, GSE7696, and GSE4412) obtained from the Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) by significant analysis of microarray (SAM). Intersection of the identified DEGs for each profile revealed 46 DEGs in GBM. A subset of common DEGs were validated by real-time reverse transcription quantitative PCR (qPCR). The prognostic value of some of the markers was also studied. We determined that RRM2 and COL3A1 were increased and directly correlated with glioma grade, while SH3GL2 and SNAP91 were decreased in GBM and inversely correlated with glioma grade. Kaplan-Meir analysis of GSE7696 revealed that COL3A1 and SNAP91 correlated with survival, suggesting that COL3A1 and SNAP91 may be suitable biomarkers for diagnostic or therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Xiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
18
|
Liu XM, Wang YK, Liu YH, Yu XX, Wang PC, Li X, Du ZQ, Yang CX. Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation. J Biol Chem 2017; 293:1767-1780. [PMID: 29222335 DOI: 10.1074/jbc.m117.809608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/03/2017] [Indexed: 02/02/2023] Open
Abstract
The brilliant cresyl blue (BCB) test is used in both basic biological research and assisted reproduction to identify oocytes likely to be developmentally competent. However, the underlying molecular mechanism targeted by the BCB test is still unclear. To explore this question, we first confirmed that BCB-positive porcine oocytes had higher rates of meiotic maturation, better rates of cleavage and development into blastocysts, and lower death rates. Subsequent single-cell transcriptome sequencing on porcine germinal vesicle (GV)-stage oocytes identified 155 genes that were significantly differentially expressed between BCB-negative and BCB-positive oocytes. These included genes such as cdc5l, ldha, spata22, rgs2, paip1, wee1b, and hsp27, which are enriched in functionally important signaling pathways including cell cycle regulation, oocyte meiosis, spliceosome formation, and nucleotide excision repair. In BCB-positive GV oocytes that additionally had a lower frequency of DNA double-strand breaks, the CDC5L protein was significantly more abundant. cdc5l/CDC5L inhibition by short interference (si)RNA or antibody microinjection significantly impaired porcine oocyte meiotic maturation and subsequent parthenote development. Taken together, our single-oocyte sequencing data point to a potential new role for CDC5L in porcine oocyte meiosis and early embryo development, and supports further analysis of this protein in the context of the BCB test.
Collapse
Affiliation(s)
- Xiao-Man Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yan-Kui Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yun-Hua Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Xia Yu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Pei-Chao Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Li
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhi-Qiang Du
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Cai-Xia Yang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Tang Z, Zeng Q, Li Y, Zhang X, Suto MJ, Xu B, Yi N. Predicting radiotherapy response for patients with soft tissue sarcoma by developing a molecular signature. Oncol Rep 2017; 38:2814-2824. [PMID: 29048650 PMCID: PMC5780036 DOI: 10.3892/or.2017.5999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Soft tissue sarcomas are rare and aggressive tumors arising from connective tissues. Adjuvant radiotherapy is a commonly used treatment approach for the majority of sarcomas. We attempted to identify a gene signature that can predict radiosensitive patients who are most likely to have a better treatment response from radiotherapy, compared with disease progression. Using the publicly available data of soft tissue sarcoma from The Cancer Genome Atlas, we developed a cross-validation procedure to identify a predictive gene signature for radiosensitivity. The results showed that the predicted radiosensitive patients who received radiotherapy had significantly improved treatment response. We further provide supportive evidence to validate our sensitivity prediction. Results showed that the predicted radiosensitive patients who received radiotherapy had significantly improved survival than patients who did not. ROC analysis showed that the developed gene signature had a powerful prediction on treatment response. We further found that predicted radiosensitive patients who received radiotherapy had a significantly reduced rate of new tumor events. Finally, we validated our gene signature using a hierarchical cluster analysis, and found that the predicted sensitivities were well-matched with results from the cluster analysis. These results are consistent with our expectation, suggesting that the identified gene signature and radiosensitivity prediction are effective. The genes involved in the signature may provide a molecular basis for prognostic studies and radiotherapy target discovery.
Collapse
Affiliation(s)
- Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qinghua Zeng
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Yan Li
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinyan Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mark J Suto
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Bo Xu
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
20
|
Evaluation of gene expression level of CDC5L and MACC1 in poor prognosis and progression of osteosarcoma. Tumour Biol 2015; 37:8153-7. [PMID: 26715275 DOI: 10.1007/s13277-015-4726-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022] Open
Abstract
Current evidences have indicated that osteosarcoma is strongly associated with abnormal genetic and epigenetic changes that lead to the abnormal expression of oncogenes or methylation of tumor suppressor genes. In the present study, MACC1 and CDC5L mRNA levels in the patients with osteosarcoma were evaluated using quantitative real-time PCR. Our results demonstrated that CDC5L mRNA levels were higher in tumor tissues than in adjacent normal tissues (2.713 ± 0.738 vs. 1.071 ± 0.629; P < 0.05). Moreover, MACC1 was upregulated in tumor bone tissues than in adjacent normal tissues (3.221 ± 0. 624 vs. 1.427 ± 0.456; P < 0.05). Our result demonstrated that high expression of CDC5L was significantly related to advanced TNM stage (P = 0.032). No significant difference was determined between CDC5L mRNA expression and other clinicopathological parameters including age, gender, tumor diameter, location, tumor grade, and histological type. In addition, overexpression of MACC1 was strongly correlated with advanced TNM stage (P = 0.027) and high tumor grade (P = 0.035). Our findings indicated that mRNA level of CDC5L is correlated with advanced TNM stage, and MACC1 may be involved in progression of osteosarcoma.
Collapse
|