1
|
Syed RU, Alshammari MD, Banu H, Khojali WMA, Jafar M, Nagaraju P, Alshammari A. Targeting the autophagy-miRNA axis in prostate cancer: toward novel diagnostic and therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7421-7437. [PMID: 38761210 DOI: 10.1007/s00210-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia.
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 34212, Saudi Arabia.
| | - Potnuri Nagaraju
- Department of Pharmaceutics, Mandesh Institute of Pharmaceutical Science and Research Center, Mhaswad, Maharashtra, India
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| |
Collapse
|
2
|
Analysis on Value of Applying Serum miR-144 and miR-221 Levels in Diagnosing Atherosclerosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2261854. [PMID: 35126910 PMCID: PMC8808211 DOI: 10.1155/2022/2261854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To explore the value of serum miR-144 and miR-221 in diagnosing atherosclerosis (AS). METHODS The clinical data of 52 AS patients treated in the department of cardiovascular medicine of our hospital from August 2019 to August 2020 were retrospectively analyzed, and 53 healthy persons were selected from the physical examination center at the same period as the control group. By measuring the indicators including the serum vascular endothelial growth factor (VEGF), superoxide dismutase (SOD), miR-144, and miR-221 in patients of both groups, their value of diagnosing AS was analyzed. RESULTS Compared with the control group, the AS group obtained significantly higher serum miR-221 and miR-144 expression levels (P < 0.001), significantly higher mean serum homocysteine (Hcy) level value (P < 0.001), lower mean serum SOD level (P < 0.001), and significantly higher level values of serum VEGF, nuclear factor-kappaB (NF-kB), and transforming growth factor-β (TGF-β) (P < 0.001), and the area under ROC curve, sensitivity, and specificity of combining miR-221 with miR-144 were significantly higher than those of single diagnosis. CONCLUSION Serum miR-221 and miR-144 expression levels are increased in AS patients, and combining the two indicators in diagnosis is more accurate and can provide an accurate basis for diagnosis and condition assessment of AS.
Collapse
|
3
|
Wang Y, Qiao X, Yang X, Yuan M, Xian S, Zhang L, Yang D, Liu S, Dai F, Tan Z, Cheng Y. The role of a drug-loaded poly (lactic co-glycolic acid) (PLGA) copolymer stent in the treatment of ovarian cancer. Cancer Biol Med 2021; 17:237-250. [PMID: 32296591 PMCID: PMC7142835 DOI: 10.20892/j.issn.2095-3941.2019.0169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives: Cisplatin (CDDP) is a widely used and effective basic chemotherapeutic drug for the treatment of a variety of tumors, including ovarian cancer. However, adverse side effects and acquired drug resistance are observed in the clinical application of CDDP. Identifying a mode of administration that can alleviate side effects and reduce drug resistance has become a promising strategy to solve this problem. Methods: In this study, 3D printing technology was used to prepare a CDDP-poly (lactic-co-glycolic acid) (CDDP-PLGA) polymer compound stent, and its physicochemical properties and cytotoxicity were evaluated both in vitro and in vivo. Results: The CDDP-PLGA stent had a significant effect on cell proliferation and apoptosis and clearly decreased the size of subcutaneous tumors in nude mice, whereas the systemic side effects were mild compared with those of intraperitoneal CDDP injection. Compared with the control group, CDDP-PLGA significantly increased the mRNA and protein levels of p-glycoprotein (P < 0.01; P < 0.01) and decreased vascular endothelial growth factor mRNA (P < 0.05) and protein levels (P < 0.01), however, CDDP-PLGA significantly decreased the mRNA and protein levels of p-glycoprotein (P < 0.01; P < 0.01) and vascular endothelial growth factor (P < 0.01; P < 0.01), which are associated with chemoresistance, in subcutaneous tumor tissue. Immunohistochemistry assay results revealed that, in the CDDP-PLGA group, the staining of the proliferation-related genes Ki67 and PCNA were lightly, and the apoptosis-related gene caspase-3 stained deeply. Conclusions: PLGA biomaterials loaded with CDDP, as compared with the same amount of free CDDP, showed good efficacy in terms of cytotoxicity, as evidenced by changes in apoptosis. Continuous local CDDP release can decrease the systemic side effects of this drug and the occurrence of drug resistance and angiogenesis, and improve the therapeutic effect. This new approach may be an effective strategy for the local treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoyin Qiao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Peking University, Beijing 100044, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha 410082, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
4
|
Sun XB, Chen YW, Yao QS, Chen XH, He M, Chen CB, Yang Y, Gong XX, Huang L. MicroRNA-144 Suppresses Prostate Cancer Growth and Metastasis by Targeting EZH2. Technol Cancer Res Treat 2021; 20:1533033821989817. [PMID: 33550923 PMCID: PMC7876575 DOI: 10.1177/1533033821989817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.
Collapse
Affiliation(s)
- Xin-Bo Sun
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yong-Wei Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Qi-Sheng Yao
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xu-Hua Chen
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Min He
- Department of Gynaecology and Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Cong-Bo Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yong Yang
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xiao-Xin Gong
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Li Huang
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| |
Collapse
|
5
|
Xin W, Zhang M, Yu Y, Li S, Ma C, Zhang J, Jiang Y, Li Y, Zheng X, Zhang L, Zhao X, Pei X, Zhu D. BCAT1 binds the RNA-binding protein ZNF423 to activate autophagy via the IRE1-XBP-1-RIDD axis in hypoxic PASMCs. Cell Death Dis 2020; 11:764. [PMID: 32938905 PMCID: PMC7494854 DOI: 10.1038/s41419-020-02930-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Abnormal functional changes in pulmonary artery smooth muscle cells are the main causes of many lung diseases. Among, autophagy plays a crucial role. However, the specific molecular regulatory mechanism of autophagy in PASMCs remains unclear. Here, we first demonstrate that BCAT1 played a key role in the autophagy of hypoxic PASMCs and hypoxic model rats. BCAT1-induced activation and accumulation of the autophagy signaling proteins BECN1 and Atg5 by the endoplasmic reticulum (ER) stress pathway. Interestingly, we discovered that BCAT1 bound IRE1 on the ER to activate expression of its downstream pathway XBP-1-RIDD axis to activate autophagy. More importantly, we identified an RNA-binding protein, zinc finger protein 423, which promoted autophagy by binding adenylate/uridylate (AU)-rich elements in the BCAT1 mRNA 3′-untranslated region. Overall, our results identify BCAT1 as a potential therapeutic target for the clinical treatment of lung diseases and reveal a novel posttranscriptional regulatory mechanism and signaling pathway in hypoxia-induced PASMC autophagy.
Collapse
Affiliation(s)
- Wei Xin
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Min Zhang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Yang Yu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Songlin Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, P.R. China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Junting Zhang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Yuan Jiang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Yiying Li
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xiaodong Zheng
- Department of Genetic and Cell Biology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xuzhong Pei
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Daling Zhu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China. .,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China. .,State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Daqing, 163319, P.R. China. .,Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, P.R. China.
| |
Collapse
|
6
|
Clinical Theragnostic Potential of Diverse miRNA Expressions in Prostate Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 12:cancers12051199. [PMID: 32397507 PMCID: PMC7281275 DOI: 10.3390/cancers12051199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Prostate cancer (PrC) is the second-most frequent cancer in men, its incidence is emerging globally and is the fifth leading cause of death worldwide. While diagnosis and prognosis of PrC have been studied well, the associated therapeutic biomarkers have not yet been investigated comprehensively. This systematic review and meta-analysis aim to evaluate the theragnostic effects of microRNA expressions on chemoresistance in prostate cancer and to analyse the utility of miRNAs as clinical theragnostic biomarkers. Methods: A systematic literature search for studies reporting miRNA expressions and their role in chemoresistance in PrC published until 2018 was collected from bibliographic databases. The evaluation of data was performed as per PRISMA guidelines for systematic review and meta-analysis. Meta-analysis was performed using a random-effects model using Comprehensive Meta-Analysis (CMA) software. Heterogeneity between studies was analysed using Cochran’s Q test, I2 and the Tau statistic. Quality assessment of the studies was performed using the Newcastle–Ottawa Scale (NOS) for the methodological assessment of cohort studies. Publication bias was assessed using Egger’s bias indicator test, Orwin and classic fail-safe N test, Begg and Mazumdar rank collection test, and Duval and Tweedie’s trim and fill methods. Findings: Out of 2909 studies retrieved, 79 studies were shortlisted and reviewed. A total of 17 studies met our eligibility criteria, from which 779 PrC patients and 17 chemotherapy drugs were examined, including docetaxel and paclitaxel. The majority of the drug regulatory genes reported were involved in cell survival, angiogenesis and cell proliferation pathways. We studied 42 miRNAs across all studies, out of which two miRNAs were found to be influencing chemosensitivity, while 21 were involved in chemoresistance. However, the remaining 19 miRNAs did not appear to have any theragnostic effects. Besides, the prognostic impact of the miRNAs was evaluated and had a pooled HR value of 1.960 with 95% CI (1.377–2.791). Interpretation: The observation of the current study depicts the significance of miRNA expression as a theragnostic biomarker in medical oncology. This review suggests the involvement of specific miRNAs as predictors of chemoresistance and sensitivity in PrC. Hence, the current systematic review and meta-analysis provide insight on the use of miRNA as PrC biomarkers, which can be harnessed as molecular candidates for therapeutic targeting.
Collapse
|
7
|
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int J Mol Sci 2020; 21:ijms21072578. [PMID: 32276343 PMCID: PMC7177921 DOI: 10.3390/ijms21072578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and non-coding RNAs that display aberrant expression in the tissue and plasma of cancer patients when tested in comparison to healthy individuals. In past decades, research data proposed that miRNAs could be diagnostic and prognostic biomarkers in cancer patients. It has been confirmed that miRNAs can act either as oncogenes by silencing tumor inhibitors or as tumor suppressors by targeting oncoproteins. MiR-144s are located in the chromosomal region 17q11.2, which is subject to significant damage in many types of cancers. In this review, we assess the involvement of miR-144s in several cancer types by illustrating the possible target genes that are related to each cancer, and we also briefly describe the clinical applications of miR-144s as a diagnostic and prognostic tool in cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Zohre Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745845, Iran
| | - Meysam Rahmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 5165665931, Iran;
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology DIMO—University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| |
Collapse
|
8
|
Shi F, Su J, Liu Z, Wang J, Wang T. miR-144 reverses cisplatin resistance in cervical cancer via targeting LHX2. J Cell Biochem 2019; 120:15018-15026. [PMID: 31017720 DOI: 10.1002/jcb.28763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/08/2022]
Abstract
Mounting evidence showed that microRNAs involve in development and chemoresistance of various human cancers. We explored the roles and mechanisms of miR-144 in resistance to cisplatin (CDDP) of cervical cancer cells. miR-144 and LIM homeobox 2 (LHX2) expression in CDDP-resistant and the parental cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, respectively. The functions of miR-144 overexpression on cell viability, the incidence of apoptosis, the activity of caspase-3/7, the cleaved-caspase-3 expression, cell migration, and invasion were determined in Hela cells and Hela/CDDP cells. Overexpression of miR-144 reduced cell viability, induced cell apoptosis, and inhibited cell migration and invasion after CDDP treatment. Besides, a luciferase reporter system demonstrated that miR-144 could directly bind to the 3' untranslated region (3'-UTR) of LHX2 messenger RNA (mRNA). Gain expression of miR-144 decreased the expression of LHX2 both in mRNA and protein levels. Furthermore, restoration of LHX2 partly abolished the biological functions of miR-144 in resistance of cervical cancer cells. Taken together, miR-144 overcomes resistance to CDDP via promoting cell apoptosis and inhibiting invasion through targeting LHX2 in cervical cancer cells.
Collapse
Affiliation(s)
- Fan Shi
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Jin Su
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Zi Liu
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Jiquan Wang
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Tao Wang
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Fan W, Li X, Zhang D, Li H, Shen H, Liu Y, Chen G. Detrimental Role of miRNA-144-3p in Intracerebral Hemorrhage Induced Secondary Brain Injury is Mediated by Formyl Peptide Receptor 2 Downregulation Both In Vivo and In Vitro. Cell Transplant 2018; 28:723-738. [PMID: 30511586 PMCID: PMC6686441 DOI: 10.1177/0963689718817219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although microRNA-144-3p (miRNA-144-3p) has been shown to suppress tumor proliferation and invasion, its function in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI) remains unclear. Thus, this study was designed to investigate the role of miRNA-144-3p in ICH. To accomplish this, we used adult male Sprague-Dawley rats to establish an in vivo ICH model by injecting autologous blood, while cultured primary rat cortical neurons were exposed to oxyhemoglobin (OxyHb) to mimic ICH in vitro. To examine the role of miRNA-144-3p in ICH-induced SBI, we used an miRNA-144-3p mimic and inhibitor both in vivo and in vitro. Following ICH induction, we found miRNA-144-3p expression to increase. Additionally, we predicted the formyl peptide receptor 2 (FPR2) to be a potential miRNA-144-3p target, which we validated experimentally, with FPR2 expression downregulated when miRNA-144-3p was upregulated. Furthermore, elevated miRNA-144-3p levels aggravated brain edema and neurobehavioral disorders and induced neuronal apoptosis via the downregulation of FPR2 both in vivo and in vitro. We suspected that these beneficial effects provided by FPR2 were associated with the PI3K/AKT pathway. We validated this finding by overexpressing FPR2 while inhibiting PI3K/AKT in vitro and in vivo. In conclusion, miRNA-144-3p aggravated ICH-induced SBI by targeting and downregulating FPR2, thereby contributing to neurological dysfunction and neural apoptosis via PI3K/AKT pathway activation. These findings suggest that inhibiting miRNA-144-3p may offer an effective approach to attenuating brain damage incurred after ICH and a potential therapy to improve ICH-induced SBI.
Collapse
Affiliation(s)
- Weijian Fan
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,2 Department of Vascular Surgery, Suzhou Hospital Affiliated of Nanjing Traditional Chinese Medicine University, Suzhou, China
| | - Xiang Li
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongping Zhang
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yizhi Liu
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- 1 Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Qin D, Li H, Xie H. Ultrasound‑targeted microbubble destruction‑mediated miR‑205 enhances cisplatin cytotoxicity in prostate cancer cells. Mol Med Rep 2018; 18:3242-3250. [PMID: 30066866 PMCID: PMC6102709 DOI: 10.3892/mmr.2018.9316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding ~20 nucleotides long sequences that function in the initiation and development of a number of cancers. Ultrasound-targeted microbubble destruction (UTMD) is an effective method for microRNA delivery. The aim of the present study was to investigate the potential roles of UTMD-mediated miRNA (miR)-205 delivery in the development of prostate cancer (PCa). In the present study, miR-205 expression was examined by reverse transcription-quantitative polymerase chain reaction assay. miR-205 mimics were transfected into PC-3 cells using the UTMD method, and the PC-3 cells were also treated with cisplatin. Cell proliferation, apoptosis, migration and invasion abilities were detected using Cell Counting kit-8, flow cytometry, wound healing and Transwell assays, respectively. In addition, the protein expression levels of caspase-9, cleaved-caspase 9, cytochrome c (cytoc), epithelial (E)-cadherin, matrix metalloproteinase-9 (MMP-9), phosphorylated (p)-extracellular signal-regulated kinase (ERK) and ERK were measured by western blot analysis. The results of the present study demonstrated that miR-205 expression was low in human PCa cell lines compared with healthy cells and that UTMD-mediated miR-205 delivery inhibited PCa cell proliferation, migration and invasion, and promoted apoptosis modulated by cisplatin compared with UTMD-mediated miR-negative control group and miR-205-treated group. Furthermore, it was demonstrated that UTMD-mediated miR-205 transfection increased the expression of caspase-9, cleaved-caspase 9, cytochrome c and E-cadherin, and decreased the expression of MMP-9 and p-ERK. Therefore, UTMD-mediated miR-205 delivery may be a promising method for the treatment of PCa.
Collapse
Affiliation(s)
- Dingwen Qin
- Department of Imaging, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Haige Li
- Department of Imaging, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Honglin Xie
- Department of Urology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
12
|
Liu J, Feng L, Zhang H, Zhang J, Zhang Y, Li S, Qin L, Yang Z, Xiong J. Effects of miR-144 on the sensitivity of human anaplastic thyroid carcinoma cells to cisplatin by autophagy regulation. Cancer Biol Ther 2018; 19:484-496. [PMID: 29504819 DOI: 10.1080/15384047.2018.1433502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We investigated the influence of miR-144 on the cisplatin-sensitivity of anaplastic thyroid carcinoma (ATC) cells and explored the internal molecular mechanism of miR-144. METHODS Thyroid cancer cells ARO, TPC1 and normal thyroid cells HT-ori3 were used in this research. Expressions of miR-144 and TGF-α were uncovered by western blot and qRT-PCR. Expressions of autophagy-related protein LC3 II and apoptosis-related protein Caspase-3 and PARP were explored by western blot and immunofluorescence. Cell viability was detected by MTT assay and apoptosis condition was revealed by flow cytometric analysis and TUNEL staining. Dual-luciferase reporter assay was employed to verify the target relationship. Tissue sections were detected by IHC. Xenograft assay was conducted to further verify conclusions in vivo. RESULTS MiR-144, which was low expressed in ATC cells and tissues, could inhibit autophagy activation induced by cisplatin, enhancing the sensitivity of ATC cells to cisplatin, and promoting cell apoptosis. TGF-α was the target of miR-144 and was negatively regulated by it. MiR-144 could improve the sensitivity of ATC cells to cisplatin and inhibit tumor growth by suppressing TGF-α both in vitro and in vivo. CONCLUSION MiR-144 could inhibit autophagy of ATC cells by down-regulating TGF-α, enhancing the cisplatin-sensitivity of ATC cells.
Collapse
Affiliation(s)
- Jing Liu
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Liguo Feng
- b Department of General Surgery , Taiyuan Municipal No.2 People's Hospital , Taiyuan , Shanxi , China
| | - Haitao Zhang
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Jin Zhang
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Yanyan Zhang
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Shujing Li
- a Department of General Surgery , the First Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Long Qin
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Ziyao Yang
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Jianxia Xiong
- c Department of General Surgery , Shanxi Medical University , Taiyuan , Shanxi , China
| |
Collapse
|
13
|
Hemoglobin enhances miRNA-144 expression and autophagic activation mediated inflammation of microglia via mTOR pathway. Sci Rep 2017; 7:11861. [PMID: 28928406 PMCID: PMC5605685 DOI: 10.1038/s41598-017-12067-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 09/04/2017] [Indexed: 01/20/2023] Open
Abstract
Intracerebral hemorrhage promotes autophagic activation of microglia and enhances neuroinflammation. MiRNAs are key factors to autophagy, contributed to negatively and posttranscriptionally regulate gene expression and function. However, the specific miRNAs involved in the intracerebral hemorrhage mediated microglia autophagic activation are unidentified. In this experiment, microglia was treated with hemoglobin. And then, miRNA-144 expression, autophagic activation and inflammation of microglia were detected. In addition, the mTOR target of miRNA-144 and its regulation were identified. Our data demonstrated that hemoglobin promoted miRNA-144 expression and autophagic activation mediated inflammation. Additionally, miRNA-144 targeted mTOR by directly interacting with the 3' untranslated regions (UTRs), mutations of the binding sites abolish the miRNA-144 responsiveness. Overexpression of mTOR decreased autophagic activation and inflammation of microglia. Therefore, our results suggested that miRNA-144 contributed to hemoglobin mediated autophagic activation and inflammation of microglia via mTOR pathway. And miRNA based treatment provided novel therapeutical strategy for intracerebral hemorrhage.
Collapse
|
14
|
Guo L, Zhou L, Gao Q, Zhang A, Wei J, Hong D, Chu Y, Duan X, Zhang Y, Xu G. MicroRNA-144-3p inhibits autophagy activation and enhances Bacillus Calmette-Guérin infection by targeting ATG4a in RAW264.7 macrophage cells. PLoS One 2017. [PMID: 28636635 PMCID: PMC5479589 DOI: 10.1371/journal.pone.0179772] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding nucleotides that play major roles in the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis (M. tuberculosis). Whether miRNAs specifically influence the activation of macrophage autophagy during M. tuberculosis infection is largely unknown. In the present study, we demonstrate that Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection of macrophages leads to increased expression of miR-144-3p, which targets autophagy-related gene 4a (ATG4a), to inhibit autophagy activation and antimicrobial responses to BCG. Overexpression of miR-144-3p significantly decreased both mRNA and protein levels of ATG4a, inhibited the formation of autophagosomes in RAW264.7 cells and increased intracellular survival of BCG. However, transfection with miR-144-3p inhibitor led to an increase in ATG4a levels, accelerated the autophagic response in macrophages, and decreased BCG survival in macrophages. The experimental results of this study reveal a novel role of miR-144-3p in inhibiting autophagy activation by targeting ATG4a and enhancing BCG infection, and provide potential targets for developing improved treatment.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Linlin Zhou
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Clinical laboratory, Affiliated Hospital of north china university of science and technology, Tangshan, China
| | - Qian Gao
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Aijun Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jun Wei
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuankui Chu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- * E-mail:
| |
Collapse
|
15
|
Abstract
Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Lisa B Frankel
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Michal Lubas
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Anders H Lund
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
16
|
Witwer KW, Halushka MK. Toward the promise of microRNAs - Enhancing reproducibility and rigor in microRNA research. RNA Biol 2016; 13:1103-1116. [PMID: 27645402 DOI: 10.1080/15476286.2016.1236172] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fields of applied and translational microRNA research have exploded in recent years as microRNAs have been implicated across a spectrum of diseases. MicroRNA biomarkers, microRNA therapeutics, microRNA regulation of cellular physiology and even xenomiRs have stimulated great interest, which have brought many researchers into the field. Despite many successes in determining general mechanisms of microRNA generation and function, the application of microRNAs in translational areas has not had as much success. It has been a challenge to localize microRNAs to a given cell type within tissues and assay them reliably. At supraphysiologic levels, microRNAs may regulate hosts of genes that are not the physiologic biochemical targets. Thus the applied and translational microRNA literature is filled with pitfalls and claims that are neither scientifically rigorous nor reproducible. This review is focused on increasing awareness of the challenges of working with microRNAs in translational research and recommends better practices in this area of discovery.
Collapse
Affiliation(s)
- Kenneth W Witwer
- a Department of Molecular and Comparative Pathobiology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Department of Neurology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marc K Halushka
- c Department of Pathology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
17
|
Gu H, Liu M, Ding C, Wang X, Wang R, Wu X, Fan R. Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Med 2016; 5:1174-82. [PMID: 26990493 PMCID: PMC4924376 DOI: 10.1002/cam4.664] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cells in hypoxia usually make adaptive changes in cellular metabolism, such as altered autophagy. This might be a cause of enhanced radioresistance in some types of cancer. In this study, we investigated hypoxia‐responsive miRNAs in two prostate cancer cell lines (DU145 and PC3). This study firstly reported that hypoxia induces further downregulation of miR‐124 and miR‐144, which might be a result of impaired dicer expression. These two miRNAs can simultaneously target 3′UTR of PIM1. Functional study showed that miR‐124 or miR‐144 overexpression can inhibit hypoxia‐induced autophagy and enhance radiosensitivity at least via downregulating PIM1. Therefore, hypoxia induced miR‐124 and miR‐144 downregulation may contribute to a prosurvival mechanism of prostate cancer cells to hypoxia and irradiation at least through attenuated suppressing of PIM1. This finding presents a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Hao Gu
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Mingzhu Liu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Changmao Ding
- Department of RadiologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Xin Wang
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Rui Wang
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Xinyu Wu
- Department of Nuclear MedicineHenan Provincial People's Hospital & the People's Hospital of Zhengzhou UniversityHenan450003China
| | - Ruitai Fan
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| |
Collapse
|