1
|
Parekh M, Ramos T, Ferrari S, Ahmad S. Inhibiting miR-195-5p Induces Proliferation of Human Corneal Endothelial Cells. Int J Mol Sci 2023; 24:11490. [PMID: 37511249 PMCID: PMC10380751 DOI: 10.3390/ijms241411490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Transparency of the human cornea is responsible for clear vision, which is maintained by a monolayer of non-proliferative human corneal endothelial cells (HCEnCs). Dysfunction of these cells can result in irreversible corneal blindness. It is important to identify key factors that limit the proliferation of HCEnCs and thus attempt to reverse them. Extracellular vesicles contain cargo which includes microRNAs (miRNAs) that can modulate a cellular function. In non small cell lung cancer, expression of miR-195-5p has been shown to inhibit proliferation; therefore, we aimed to investigate the inhibitory effect of miR-195-5p in inducing the proliferation of HCEnCs. Human corneal endothelial cell line (HCEC-12) and primary HCEnCs were cultured with miR-195-5p scramble, mimic or inhibitor. Corneal tissues from human cadaveric and FECD donors, and from pigs, mice and rabbits, were used for RT-PCR. miR-195-5p showed an abundance value of 11,363.31 a.u. When normalized against HCEnCs from cadaveric donors, FECD tissues showed a significant upregulation of miR-195-5p (p < 0.05) but was significantly downregulated in pig (p < 0.001), mouse (p < 0.01) and rabbit (p < 0.001) CEnCs, which have known proliferative capacity. Proliferation, cell doubling, and wound healing rates were significantly higher when miR-195-5p was inhibited. Inhibiting miR-195-5p showed a significant improvement in viability (HEC staining), decreased cell apoptosis (TdT-dNTP staining) and expression of ZO-1, NA+/K+-ATPase and Ki-67 markers. Expression of miR-195-5p is found in HCEnCs and FECD cells, which restricts the proliferation of these cells. However, inhibiting miR-195-5p can induce the proliferation of HCEnCs, which opens exciting directions for future research in prolonging FECD pathogenesis by increasing the proliferative capacity of HCEnCs using anti-miR therapy in vivo.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Fondazione Banca degli Occhi del Veneto Onlus, Via Paccagnella, 11, 30174 Venice, Italy
| | - Tiago Ramos
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto Onlus, Via Paccagnella, 11, 30174 Venice, Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Rd, London EC1V 2PD, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 162 City Rd, London EC1V 2PD, UK
| |
Collapse
|
2
|
Wu Z. MiR-195 connects lncRNA RUNX1-IT1 and cyclin D1 to regulate the proliferation of glioblastoma cells. Int J Neurosci 2023; 133:13-18. [PMID: 33507136 DOI: 10.1080/00207454.2021.1881090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIMS LncRNA RUNX1-IT1 has been characterized as a tumor suppressive lncRNA in several cancers, while its role in glioblastoma (GBM) is unknown. This study aimed to investigate the potential involvement of RUNX1-IT1 in GBM. METHODS Expression of RUNX1-IT1 in GBM tissues and paired non-tumor tissues was determined by RT-qPCR. The interaction between RUNX1-IT1 and miR-195 was analyzed by dual luciferase activity assay. Overexpression of RUNX1-IT1 and miR-195 was achieved in GBM cells to explore the interaction between them. The effects of RUNX1-IT1 and miR-195 overexpression on the expression of cyclin D1 were analyzed by RT-qPCR and Western blot. Cell proliferation was analyzed by CCK-8 assay. RESULTS RUNX1-IT1 was upregulated in GBM. RUNX1-IT1 and miR-195 interacted with each other, but failed to regulate the expression of each other. Overexpression of RUNX1-IT1 resulted in the upregulation of cyclin D1, and also reduced the effects of miR-195 overexpression on cyclin D1 expression. RUNX1-IT1 and cyclin overexpression increased cell proliferation, while miR-195 overexpression decreased cell proliferation. In addition, RUNX1-IT1 overexpression reduced the effects of miR-195 overexpression on cell proliferation. CONCLUSIONS RUNX1-IT1 may sponge miR-195 to upregulate cyclin D1, thereby increasing the proliferation of glioblastoma cells.
Collapse
Affiliation(s)
- Zhongbao Wu
- Department of Neurosurgery, The Third People's Hospital of Datong City, Datong, P.R. China
| |
Collapse
|
3
|
Wang J, Song R, Wang C, Zhang S, Zhang Y, Zhu Y, Zhao G. miR-195 Inhibits Proliferation and Enhances Apoptosis of OSCC Cells via Targeting TLR4. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2270777. [PMID: 35310196 PMCID: PMC8926532 DOI: 10.1155/2022/2270777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
The aim of this research was to assess the function of microribonucleic acid (miR)-195 in the apoptosis and proliferation of oral squamous cell carcinoma (OSCC) cells as well as its action mechanism. The downstream target protein of miR-195 was predicted using the biological software. A quantitative polymerase chain reaction (qPCR) was implemented to examine the changes in expressions of miR-195 and its target protein toll-like receptor 4 (TLR4) in OSCC cell lines (TSCCA, Tca8223, Tb3.1, and CAL-27) and normal adult human gingival fibroblasts (HGFs), and the relation between their expressions was assessed. The expressions of phosphorylated proteins in nuclear factor-κB (NF-κB) pathway were determined through western blotting. miR-195 was expressed at a noticeably lower level in four OSCC cells than in HGFs, and the lowest level appeared in CAL-27 cells. Compared with miR-195 control, the miR-195 mimic could obviously raise the expression of miR-195. In CAL-27 cells with high expression of miR-195, the proliferation was inhibited and the apoptosis was evidently enhanced. OSCC cells exhibited evidently reduced protein and mRNA expression of TLR4, and miR-195 expression was inversely associated with TLR4 expression. It was uncovered from the dual-luciferase reporter assay that cells with wild-type TLR4 had prominently weakened luciferase activity relative to cells with mutant-type TLR4, revealing that the direct target of miR-195 is TLR4. The NF-κB pathway was impeded in cells that lowly expressed TLR4. miR-195 blocks the NF-κB pathway via inhibiting the expression of TLR4 in OSCC cells, thereby exerting an antitumor effect.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
| | - Renyou Song
- Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
| | - Chunmei Wang
- Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
| | - Shuangsheng Zhang
- Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
| | - Yanqi Zhang
- Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
| | - Yanlong Zhu
- Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
| | - Gang Zhao
- Department of Oral and Maxillofacial Surgery, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, China
| |
Collapse
|
4
|
microRNA Profile Associated with Positive Lymph Node Metastasis in Early-Stage Cervical Cancer. Curr Oncol 2022; 29:243-254. [PMID: 35049697 PMCID: PMC8774324 DOI: 10.3390/curroncol29010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Lymph node metastasis (LNM) is an important prognostic factor in cervical cancer (CC). In early stages, the risk of LNM is approximately 3.7 to 21.7%, and the 5-year overall survival decreases from 80% to 53% when metastatic disease is identified in the lymph nodes. Few reports have analyzed the relationship between miRNA expression and the presence of LNM. The aim of this study was to identify a subset of miRNAs related to LNM in early-stage CC patients. Formalin-fixed paraffin-embedded tissue blocks were collected from patients with early-stage CC treated by radical hysterectomy with lymphadenectomy. We analyzed samples from two groups of patients—one group with LNM and the other without LNM. Global miRNA expression was identified by microarray analysis, and cluster analysis was used to determine a subset of miRNAs associated with LNM. Microarray expression profiling identified a subset of 36 differentially expressed miRNAs in the two groups (fold change (FC) ≥ 1.5 and p < 0.01). We validated the expression of seven miRNAs; miR-487b, miR-29b-2-5p, and miR-195 were underexpressed, and miR-92b-5p, miR-483-5p, miR-4534, and miR-548ac were overexpressed according to the microarray experiments. This signature exhibited prognostic value for identifying early-stage CC patients with LNM. These findings may help detect LNM that cannot be observed in imaging studies.
Collapse
|
5
|
Li C, Zhu L, Fu L, Han M, Li Y, Meng Z, Qiu X. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn Pathol 2021; 16:93. [PMID: 34689819 PMCID: PMC8543861 DOI: 10.1186/s13000-021-01153-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have become a hot topic in the area of tumor biology due to its closed structure and the post-transcriptional regulatory effect. This study aims to clarify the roles of circRNA nuclear receptor-interacting protein 1 (NRIP1; circNRIP1) and the possible mechanisms in papillary thyroid carcinoma (PTC). METHODS The real-time PCR was used to detect the expression level of CircRNA NRIP1 in PTC specimens and cell lines. The effects of CircRNA NRIP1 and miR-195-5p on the PTC cell functions were detected by MTT, transwell, and flow cytometry assays. Dual-luciferase reporter assays and pull down assays were used to verify the association between circRNA NRIP1 and miR-195-5p. The murine xenograft models were constructed to detect the roles of CircRNA NRIP1 and miR-195-5p. Western blot was applied to detect the effects of CircRNA NRIP1 and miR-195-5p on the P38 MAPK and JAK/STAT singling pathways. RESULTS CircRNA NRIP1 was over-expressed in PTC tissues and cells and the high levels of CircRNA NRIP1 were correlated with advanced PTC stage. Depletion of CircRNA NRIP1 inhibited PTC cell proliferation, invasion, while accelerated apoptosis. miR-195-5p upregulation repressed proliferation and invasion capabilities, and accelerated apoptosis of PTC cell lines and restraining the growth of tumor xenografts, while the functions were reversed following CircRNA NRIP1 overexpression in PTC cells and tumor xenografts. Besides, the protein levels of p-p38, p-JAK2 and p-STAT1 were remarkably down-regulated in miR-195-5p overexpressed PTC cells and tumor xenografts, whereas CircRNA NRIP1 up-regulation overturned the impacts. CONCLUSIONS In conclusion, CircRNA NRIP1 promoted PTC progression by accelerating PTC cells proliferation, invasion and tumor growth, while impeding apoptosis by way of sponging miR-195-5p and regulating the P38 MAPK and JAK/STAT pathways.
Collapse
Affiliation(s)
- Chuang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Lijuan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ya Li
- Institute for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450000, Zhengzhou, China
| | - Zhaozhong Meng
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China.
| |
Collapse
|
6
|
Liu Z, Zhang L, Chen W, Yuan F, Yang Z, Liu S, Le F. miR-195-5p regulates cell proliferation, apoptosis, and invasion of thyroid cancer by targeting telomerase reverse transcriptase. Bioengineered 2021; 12:6201-6209. [PMID: 34482792 PMCID: PMC8806884 DOI: 10.1080/21655979.2021.1963908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In most human primary cancers, the expression, or telomerase activity, of telomerase reverse transcriptase (TERT) is detectable. However, the mechanism ofTERTactivity within oncogenesis of thyroid cancer remains largely unknown. In this study, we identified miR-195-5p as having involvement in cell proliferation, apoptosis, and invasion in human thyroid cancer. MTT was used to measure cell proliferation, Transwell chamber was used to measure invasion. Western blotting was used to detect the expressions of TERT, PCNA, and Ki67. Target gene prediction software predicted that TERT may be the target gene of miR-195-5p. Luciferase reporting system was used to identify the targeting relationship. A significant increase of in TERT expression was observed by immunohistochemistry compared with normal tissue, however, a decrease in miR-195-5p expression using qRT-PCRand western blot compared with normal cells. Functional analysis demonstrates that miR-195-5p negatively correlated withTERTand inhibitedTERTexpression through its interaction with theTERT3ʹ-untranslatedregion (3ʹ-UTR). Overexpression of miR-195-5p was shown to inhibit proliferation and invasion, and promote apoptosis of CAL-62 thyroid cancer cells. miR-195-5p-mediatedeffects were rescued by the overexpression ofTERT. Altogether, our data demonstrate that miR-195-5p regulates cell proliferation, apoptosis, and invasion in human thyroid cancer viaTERT, providing evidence of a new potential therapeutic target for further investigation.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department Of Neonatal Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Li Zhang
- Electrocardiography Room, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University ,Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology ,Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Wen Chen
- Department Of Breast Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Fenqian Yuan
- Department Of Head And Neck Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Zhi Yang
- Department Of Neonatal Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Sheng Liu
- Department Of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei Le
- Department Of Head And Neck Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Wu J, Xu W, Ma L, Sheng J, Ye M, Chen H, Zhang Y, Wang B, Liao M, Meng T, Zhou Y, Chen H. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging (Albany NY) 2021; 13:18191-18222. [PMID: 34289449 PMCID: PMC8351708 DOI: 10.18632/aging.203156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
This investigation attempted to discern whether formononetin restrained progression of triple-negative breast cancer (TNBC) by blocking lncRNA AFAP1-AS1-miR-195/miR-545 axis. We prepared TNBC cell lines (i.e. MDA-MB-231 and BT-549) and normal human mammary epithelial cell line (i.e. MCF-10A) in advance, and the TNBC cell lines were, respectively, transfected by pcDNA3.1-lncRNA AFAP1-AS1, si-lncRNA AFAP1-AS1, pcDNA6.2/GW/EmGFP-miR-545 or pcDNA6.2/GW/EmGFP-miR-195. Resistance of TNBC cells in response to 5-Fu, adriamycin, paclitaxel and cisplatin was evaluated through MTT assay, while potentials of TNBC cells in proliferation, migration and invasion were assessed via CCK8 assay and Transwell assay. Consequently, silencing of lncRNA AFAP1-AS1 impaired chemo-resistance, proliferation, migration and invasion of TNBC cells (P<0.05), and over-expression of miR-195 and miR-545, which were sponged and down-regulated by lncRNA AFAP1-AS1 (P<0.05), significantly reversed the promoting effect of pcDNA3.1-lncRNA AFAP1-AS1 on proliferation, migration, invasion and chemo-resistance of TNBC cells (P<0.05). Furthermore, CDK4 and Raf-1, essential biomarkers of TNBC progression, were, respectively, subjected to target and down-regulation of miR-545 and miR-195 (P<0.05), and they were promoted by pcDNA3.1-lncRNA AFAP1-AS1 at protein and mRNA levels (P<0.05). Additionally, formononetin significantly decreased expressions of lncRNA AFAP1-AS1, CDK4 and Raf-1, while raised miR-195 and miR-545 expressions in TNBC cells (P<0.05), and exposure to it dramatically contained malignant behaviors of TNBC cells (P<0.05). In conclusion, formononetin alleviated TNBC malignancy by suppressing lncRNA AFAP1-AS1-miR-195/miR-545 axis, suggesting that molecular targets combined with traditional Chinese medicine could yield significant clinical benefits in TNBC.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lina Ma
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Jiayu Sheng
- Department of Breast Surgery, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Meina Ye
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hao Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yuzhu Zhang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bing Wang
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Mingjuan Liao
- Department of Traditional Chinese Medicine, The Ninth People's Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Tian Meng
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yue Zhou
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hongfeng Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| |
Collapse
|
8
|
Yang D, Yang B, Zhu Y, Xia Q, Zhang Y, Zhu X, Guo J, Ding T, Zheng J. Circular RNA-DPP4 serves an oncogenic role in prostate cancer progression through regulating miR-195/cyclin D1 axis. Cancer Cell Int 2021; 21:379. [PMID: 34271919 PMCID: PMC8283928 DOI: 10.1186/s12935-021-02062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, more and more studies have highlighted the critical regulatory roles of circular RNAs (circRNAs), a class of non-coding RNAs, in the progression of many human cancers, including prostate cancer (PCa). circRNA microarray analysis was performed to identify circRNAs that are differentially expressed in PCa tissues. METHODS 104 pairs of PCa tissues and matched adjacent normal prostate tissues (at least 2 cm distal to the tumor margin) were obtained. circRNA microarray analysis was performed on four pairs of PCa tissues and matched adjacent normal prostate tissues to investigate the potential involvement of circRNAs in PCa. Flow cytometric analysis was performed to investigate whether the effect of circDPP4 on PCa cell proliferation was associated with the alteration in cell cycle progression. The role of circDPP4 in PCa tumor growth was further explored in vivo. RESULTS We found that circDPP4 was overexpressed in PCa tissues and cell lines, and its expression was closely associated with Gleason score and clinical stage of PCa patients. In vitro loss- and gain-of-function experiments demonstrated that circDPP4 knockdown inhibited, whereas circDPP4 overexpression promoted the proliferation, migration, invasion and cell cycle progression of PCa cells. Knockdown of circDPP4 also suppressed PCa tumor growth in vivo. We further found that circDPP4 functioned as a competing endogenous RNA (ceRNA) for miR-195 in PCa cells, and miR-195 negatively regulated the expression of oncogenic cyclin D1. Rescue experiments suggested that restoration of miR-195 blocked the oncogenic role of circDPP4 in PCa cells. CONCLUSIONS Taken together, our findings revealed a novel regulatory mechanism between circDPP4 and miR-195/cyclin D1 axis, and offered novel strategies for the treatment of PCa.
Collapse
Affiliation(s)
- Deping Yang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Bo Yang
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qianlin Xia
- Department of Laboratory Medicine, The Sixth People's Hospital East Campus, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Yan Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xin Zhu
- Department of Urology, The Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, 201489, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Ding
- Department of Urology, The Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, 201489, China.
| | - Jianghua Zheng
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
9
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Pan S, Feng W, Li Y, Huang J, Chen S, Cui Y, Tian B, Tan S, Wang Z, Yao S, Chiappelli J, Kochunov P, Chen S, Yang F, Li CSR, Tian L, Tan Y, Elliot Hong L. The microRNA-195 - BDNF pathway and cognitive deficits in schizophrenia patients with minimal antipsychotic medication exposure. Transl Psychiatry 2021; 11:117. [PMID: 33558459 PMCID: PMC7870897 DOI: 10.1038/s41398-021-01240-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cognitive impairment is a core characteristic of schizophrenia, but its underlying neural mechanisms remain poorly understood. Reduced brain-derived neurotrophic factor (BDNF), a protein critical for neural plasticity and synaptic signaling, is one of the few molecules consistently associated with cognitive deficits in schizophrenia although the etiological pathway leading to BDNF reduction in schizophrenia is unclear. We examined microRNA-195 (miR-195), a known modulator of BDNF protein expression, as a potential mechanistic component. One-hundred and eighteen first-episode patients with schizophrenia either antipsychotic medication-naïve or within two weeks of antipsychotic medication exposure and forty-seven age- and sex-matched healthy controls were enrolled. MiR-195 and BDNF mRNA and BDNF protein levels in peripheral blood were tested. Cognitive function was assessed using the MATRICS Consensus Cognitive Battery (MCCB). MiR-195 was significantly higher (p = 0.01) whereas BDNF mRNA (p < 0.001) and protein (p = 0.016) levels were significantly lower in patients compared with controls. Higher miR-195 expression was significantly correlated to lower BDNF protein levels in patients (partial r = -0.28, p = 0.003) and lower BDNF protein levels were significantly associated with poorer overall cognitive performance by MCCB and also in speed of processing, working memory, and attention/vigilance domains composite score (p = 0.002-0.004). The subgroup of patients with high miR-195 and low BDNF protein showed the lowest level of cognitive functions, and miR-195 showed significant mediation effects on cognitive functions through BDNF protein. Elevated miR-195 may play a role in regulating BDNF protein expression thereby influencing cognitive impairments in schizophrenia, suggesting that development of cognition enhancing treatment for schizophrenia may consider a micro-RNA based strategy.
Collapse
Affiliation(s)
- Shujuan Pan
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yimin Cui
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Baopeng Tian
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shuping Tan
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shangwu Yao
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Joshua Chiappelli
- grid.411024.20000 0001 2175 4264Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Peter Kochunov
- grid.411024.20000 0001 2175 4264Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Shuo Chen
- grid.411024.20000 0001 2175 4264Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Fude Yang
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Chiang-Shan R. Li
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Li Tian
- grid.10939.320000 0001 0943 7661Faculty of Medicine, Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China.
| | - L. Elliot Hong
- grid.411024.20000 0001 2175 4264Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
11
|
Pisarska J, Baldy-Chudzik K. MicroRNA-Based Fingerprinting of Cervical Lesions and Cancer. J Clin Med 2020; 9:jcm9113668. [PMID: 33203149 PMCID: PMC7698009 DOI: 10.3390/jcm9113668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The regulatory functions of microRNA (miRNA) are involved in all processes contributing to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns at various stages of cervical pathology. The aim of this review is to systematize current reports on miRNA capacity that can be utilized in personalized diagnostics of cervical precancerous and cancerous lesions. The analysis of the resources available in online databases (National Center for Biotechnology Information—NCBI, PubMed, ScienceDirect, Scopus) was performed. To date, no standardized diagnostic algorithm using the miRNA pattern in cervical pathology has been defined. However, the high sensitivity and specificity of the reported assays gives hope for the development of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes. Due to this variability resulting in difficult to predict clinical outcomes, precise molecular tools are needed to improve the diagnostic and therapeutic process.
Collapse
|
12
|
Hirano T, Yunoki T, Furusawa Y, Tabuchi Y, Hayashi A. Bioinformatics analysis of the microRNA-mRNA network in sebaceous gland carcinoma of the eyelid. Mol Med Rep 2020; 23:44. [PMID: 33179085 PMCID: PMC7684873 DOI: 10.3892/mmr.2020.11682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sebaceous gland carcinoma (SGC) of the eyelid is an uncommon aggressive tumor with a relatively high rate of local recurrence and a poor prognosis following metastasis. However, the molecular mechanisms underlying the pathogenesis of SGC remain unclear. The purpose of the present study was to clarify microRNA (miRNA) expression profiles in SGC and to explore novel miRNA-mRNA networks of SGC. A small RNA-sequencing analysis was performed to identify miRNAs differentially expressed between SGC and sebaceous adenoma control samples. Bioinformatics analyses were conducted to reveal biological functions, canonical pathways and molecular interaction networks using integrated miRNA-mRNA datasets, including mRNA expression profiles of SGC from our previous study. The present results demonstrated that 16 upregulated miRNAs and 516 downregulated mRNAs were associated with loss of lipid metabolism function and enriched in cholesterol biosynthesis pathways. By contrast, 29 downregulated miRNAs and 194 upregulated mRNAs were mainly associated with the promotion of cell survival and proliferation in addition to enrichment of DNA damage-induced cell cycle-regulation pathways. Furthermore, network analyses revealed that the upregulated miRNAs, miR-130a-3p and miR-939-5p, and the downregulated miRNAs, miR-146a-5p, miR-149-3p, miR-193a-3p, miR-195-5p and miR-4671-3p, could be upstream regulators related to these functional changes of SGC. These results improved the understanding of molecular mechanisms of SGC and may help to improve the diagnosis of SGC.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
13
|
Ji YY, Meng M, Miao Y. lncRNA SNHG1 Promotes Progression of Cervical Cancer Through miR-195/NEK2 Axis. Cancer Manag Res 2020; 12:11423-11433. [PMID: 33204155 PMCID: PMC7665511 DOI: 10.2147/cmar.s277064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022] Open
Abstract
Objective Cervical cancer is a common gynecologic cancer, and no study has been reported on the way through which lncRNA SNHG1, miR-195 and NEK2 jointly affect cervical cancer cells (CCCs), so this paper will explore a new approach to the development of cervical cancer in this respect. Methods Altogether 72 cervical cancer tissues and 54 adjacent tissues were collected. qPCR was performed to quantify lncRNA SNHG1 and miR-195, whose expression vectors were constructed and then transfected into CCCs, so as to observe their effects on the cells. Western blotting (WB) was carried out to detect protein levels. MTT assay was conducted to detect cell activity. Flow cytometry was performed to detect cell apoptosis. Transwell was carried out to detect cell invasion and migration. Results The expression of lncRNA SNHG1 up-regulated while that of miR-195 down-regulated in CCCs. lncRNA SNHG1 regulated NEK2 through its targeted binding to miR-195. The down-regulation of lncRNA SNHG1 or the up-regulation of miR-195 led to the decrease of NEK2 and the reduction of cells’ activity, migration and invasion, also resulting in the increase of cell apoptosis. Rescue experiments showed that the down-regulation of miR-195 could offset the cell changes caused by lncRNA SNHG1. Conclusion lncRNA SNHG1 promotes the progression of cervical cancer through the miR-195/NEK2 axis, so lncRNA SNHG1, miR-195 and NEK2 may have potential values for diagnosing and treating cervical cancer.
Collapse
Affiliation(s)
- Yuan Yuan Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Man Meng
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Ye Miao
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
14
|
Jin M, Wang L, Zheng T, Yu J, Sheng R, Zhu H. MiR-195-3p inhibits cell proliferation in cervical cancer by targeting BCDIN3D. J Reprod Immunol 2020; 143:103211. [PMID: 33157501 DOI: 10.1016/j.jri.2020.103211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cervical cancer (CC) is one of the most prevailing cancers among females. Accumulated studies concentrated on the regulatory role of micro RNA in cancers. This research is to explore the potential role of mir-195-3p in cervical cancer progression. METHODS Bioinformatics tools were used to investigate differential expression of mir-195-3p and BCDIN3D in cervical cancer. RNA expression patterns of both mir-195-3p and BCDIN3D were detected by RT-PCR in CC cell lines. The protein expression of BCDIN3D was measured by Western Blot. Hela and Siha cell lines were transfected with mir-195-3p inhibitors, mir-195-3p mimics and BCDIN3D si-RNA, si-NC. Luciferase reporter assays were adopted to confirm the binding. The interplays between mir-195-3p and BCDIN3D were explored in CC cell lines. CCK-8 assays checked how mir-195-3p regulated cell proliferation and Ki67 was examined by Western blot for its protein expressions as a biomarker for CC cell proliferation. RESULTS MiR-195-3p was downregulated while BCDIN3D was upregulated in cervical cancer cell lines. The binding was confirmed via Luciferase Assay. RT-PCR suggested that upregulation of mir-195-3p inhibited BCDIN3D and downregulation of BCDIN3D in return induced mir-195-3p. CCK-8 pointed out that overexpression of mir-195-3p inhibited the cell viability. Ki67 protein expression was inhibited by miR-195-3p mimics or silence of BCDIN3D. CONCLUSION The present research led us to a conclusion that mir-195-3p might inhibit cervical cancer cell proliferation and was reversely regulated by BCDIN3D. This suggests that miR-195-3p mimics/ BCDIN3D si-RNA might be used in the treatments of cervical cancer in the future after various animal assays and clinical trials.
Collapse
Affiliation(s)
- Minfei Jin
- Department of Obstetrics and Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, YangPu District, Shanghai, China
| | - Lei Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, YangPu District, Shanghai, China
| | - Tao Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, YangPu District, Shanghai, China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, YangPu District, Shanghai, China
| | - Rong Sheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, YangPu District, Shanghai, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, YangPu District, Shanghai, China.
| |
Collapse
|
15
|
Wang J, Chen S. RACK1 promotes miR-302b/c/d-3p expression and inhibits CCNO expression to induce cell apoptosis in cervical squamous cell carcinoma. Cancer Cell Int 2020; 20:385. [PMID: 32792866 PMCID: PMC7418423 DOI: 10.1186/s12935-020-01435-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cervical squamous cell carcinoma (CSCC) is one of the main causes of cancer-related deaths in women worldwide. The present study was conducted with the main objective of determining the potential role of receptor for activated protein kinase C1 (RACK1) in CSCC through regulation of microRNA (miR)-302b/c/d-3p and Cyclin O (CCNO). Methods The expression of RACK1, miR-302b/c/d-3p and CCNO in CSCC tissues and cells was measured by RT-qPCR and Western blot analysis. The interaction among RACK1, miR-302b/c/d-3p, and CCNO was determined by dual luciferase reporter assay. Subsequently, effects of RACK1, miR-302b/c/d-3p and CCNO on CSCC cell cycle entry, proliferation and apoptosis were investigated with the use of flow cytometry, EdU, and TUNEL assays. Furthermore, mouse xenograft model of CSCC cells was established to verify the function of RACK1 in vivo. Results RACK1 and miR-302b/c/d-3p were down-regulated and CCNO was overexpressed in CSCC. CCNO was identified as the target of miR-302b/c/d-3p. Importantly, overexpressed miR-302b-3p, miR-302c-3p or miR-302d-3p or RACK1 enhanced the apoptosis and suppressed the proliferation of CSCC cells in vitro, while inhibiting tumor growth in vivo by targeting CCNO. Conclusions On all accounts, overexpressed RACK1 could dampen the progression of CSCC through miR-302b/c/d-3p-mediated CCNO inhibition.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, Guangxi Zhuang Autonomous Region 533000 People's Republic of China
| | - Shengcai Chen
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, Guangxi Zhuang Autonomous Region 533000 People's Republic of China
| |
Collapse
|
16
|
Rittig AH, Johansen C, Celis P, Odum N, Litman T, Woetmann A, Lindahl LM, Iversen L. Suppressed microRNA-195-5p expression in mycosis fungoides promotes tumor cell proliferation. Exp Dermatol 2020; 30:1141-1149. [PMID: 32492224 DOI: 10.1111/exd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Several cancers, including mycosis fungoides (MF), have reported dysregulation of miR-195-5p. miR-195-5p plays a role in cell cycle regulation in several malignant diseases. OBJECTIVES This study aimed to investigate: (a) the expression level of miR-195-5p in lesional MF skin biopsies and (b) the potential regulatory roles of miR-195-5p in MF. METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was used to determine miR-195-5p expression in MF skin biopsies and cell lines. The effect of miR-195-5p and ADP-ribosylation factor-like protein 2 (ARL2) on cell cycle and apoptosis was measured by flow cytometry assays. Changes in ARL2 expression were determined by RT-qPCR and Western blotting (WB). RESULTS We found lower expression levels of miR-195-5p in lesional skin from MF patients compared with non-lesional MF skin and skin from healthy volunteers. Additionally, miR-195-5p showed lower expression levels in the skin from patients with disease progression compared with patients with stable disease. In vitro studies showed that overexpression of miR-195-5p induced a cell cycle arrest in G0G1. Using microarray analysis, we identified several genes that were regulated after miR-195-5p overexpression. The most downregulated gene after miR-195-5p mimic transfection was ARL2. RT-qPCR and WB analyses confirmed downregulation of ARL2 following transfection with miR-195-5p mimic. Lastly, transfection with siRNA against ARL2 also induced a G0G1 arrest. CONCLUSION Upregulation of miR-195-5p in MF inhibits cycle arrest by downregulation of ARL2. miR-195-5p may thus function as a tumor suppressor in MF and low miR-195-5p expression in lesional MF skin may promote disease progression.
Collapse
Affiliation(s)
- Anne H Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Pamela Celis
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Odum
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Wang H, Ren S, Xu Y, Miao W, Huang X, Qu Z, Li J, Liu X, Kong P. MicroRNA-195 reverses the resistance to temozolomide through targeting cyclin E1 in glioma cells. Anticancer Drugs 2020; 30:81-88. [PMID: 30273182 PMCID: PMC6287895 DOI: 10.1097/cad.0000000000000700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioma is the most common malignant tumor of the central nervous system with poor survival. Temozolomide (TMZ) is the first-line chemotherapy drug for initial and recurrent glioma treatment with a relatively good efficacy, which exerts its antitumor effects mainly through cell death induced by DNA double-strand breaks in the G1 and S phases. However, endogenous or acquired resistance to TMZ limits glioma patients’ clinical outcome and is also an important cause of glioma replase. MicroRNA-195 (miR-195) plays an important role in the regulation of G1-phase/S-phase transition, DNA damage repair, and apoptosis of tumor cells. We found that miR-195 expression was significantly decreased in TMZ-resistant glioma cells induced with TMZ and correlated to the resistance index negatively. Also, the exogenous expression of miR-195 reversed TMZ resistance and induced the apoptosis of TMZ-resistant glioblastoma cells. Further bioinformatics analysis showed cyclin E1 (CCNE1) was a potential target gene of miR-195. Knockdown of CCNE1 partially reversed the effect of decreased miR-195 on TMZ resistance. The data from The Cancer Genome Atlas – Cancer Genome further suggested that hsa-miR-195 could negatively regulate the expression of CCNE1 in glioma. In conclusion, miR-195 reverses the resistance to TMZ by targeting CCNE1 in glioma cells and it could act as a potential target for treatment in glioma with TMZ resistance.
Collapse
Affiliation(s)
| | - Shuxian Ren
- Department of Neurosurgery, The First Hospital.,Department of Neurosurgery, Tianjin Third Centeral Hospital, Tianjin
| | - Yongming Xu
- Department of Neurosurgery, The First Hospital.,Department of Neurosurgery, QuZhou People's Hospital, QuZhou, Zhejiang, People's Republic of China
| | - Wang Miao
- Department of Neurosurgery, The First Hospital
| | | | - Zhizhao Qu
- Department of Neurosurgery, The First Hospital
| | - Jinhu Li
- Department of Neurosurgery, The First Hospital
| | | | - Pengzhou Kong
- Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University
| |
Collapse
|
18
|
Lin K, Chen H, Su C, Zhu H, Lai C, Shi Y. Long Non-Coding RNA TTN-AS1 Serves as a Competing Endogenous RNA of miR-195 to Facilitate Clear Cell Renal Cell Carcinoma Progression. Cancer Manag Res 2020; 12:3091-3097. [PMID: 32440207 PMCID: PMC7210020 DOI: 10.2147/cmar.s249456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Clear cell renal cell carcinoma (ccRCC) is an aggressive human malignancy. Long non-coding RNAs (lncRNAs) are critical regulators in many malignant tumors, including ccRCC. The aim of this study is to investigate the expression, functions and molecular mechanisms of lncRNA TTN-AS1 in ccRCC. Methods A total of 145 paired cancer and normal tissues were collected from patients with ccRCC. The expression levels of TTN-AS1 and miR-195 in the tissues or cells were measured by RT-qPCR analysis. The expression levels of cyclin D1 protein were measured by Western blot analysis. Cell proliferation and cell cycle distribution were detected by MTT assay and flow cytometer analysis, respectively. The binding relationship between miR-195 and TTN-AS1 or cyclin D1 mRNA was validated by dual-luciferase reporter assay. Results Our results revealed that TTN-AS1 expression levels in human ccRCC tissues and cell lines were markedly increased. High expression of TTN-AS1 was closely associated with adverse clinicopathological characteristics of ccRCC patients. Gain- and loss-of-function experiments showed that TTN-AS1 overexpression promoted the proliferation and cell cycle transition of ccRCC cells, while the malignant traits were obviously suppressed after TTN-AS1 knockdown. Mechanistically, miR-195 was found to bind with and to be negatively regulated by TTN-AS1 in ccRCC cells. Further, we showed that cyclin D1 is a direct target of miR-195 in ccRCC, and rescue assays verified that restoration of miR-195 expression partially blocked the oncogenic effects of TTN-AS1 in ccRCC cells. Conclusion Our study provides a novel mechanism of TTN-AS1/miR-195/cyclin D1 regulatory axis in ccRCC, which may become a breakthrough for ccRCC therapy in the future.
Collapse
Affiliation(s)
- Keng Lin
- Clinical Laboratory, Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou 510800, People's Republic of China
| | - Hao Chen
- Clinical Laboratory, The Affiliated Oncology Hospital of Sun Yat-sen University, Guangzhou 510000, People's Republic of China
| | - Chunyan Su
- Clinical Laboratory, The Second People's Hospital of Gaozhou, Gaozhou 525200, People's Republic of China
| | - Huanjin Zhu
- Clinical Laboratory, Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou 510800, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory, People's Hospital of Maoming, Maoming 525000, People's Republic of China
| | - Yaling Shi
- Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510000, People's Republic of China
| |
Collapse
|
19
|
Liu P, Hu Y, Xia L, Du M, Hu Z. miR-4417 suppresses keloid fibrosis growth by inhibiting CyclinD1. J Biosci 2020. [DOI: 10.1007/s12038-020-0018-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Luo J, Pan J, Jin Y, Li M, Chen M. MiR-195-5p Inhibits Proliferation and Induces Apoptosis of Non-Small Cell Lung Cancer Cells by Targeting CEP55. Onco Targets Ther 2019; 12:11465-11474. [PMID: 31920335 PMCID: PMC6935316 DOI: 10.2147/ott.s226921] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims to explore whether miR-195-5p can inhibit proliferation and induce apoptosis of non-small cell lung cancer (NSCLC) cells by targeting CEP55. Methods qRT-PCR was used to measure the expression of miR-195-5p in NSCLC cells. MTT assay, colony formation assay, and flow cytometry were used to detect the role of miR-195-5p in NSCLC cells. Western blot was used to measure the protein expression of CEP55, Bax and Bcl-2 in cells. Dual-Luciferase assay was performed to verify the relationship between miR-195-5p and CEP55. Results The expression of miR-195-5p was higher in human normal lung cell lines than in NSCLC cells. MiR-195-5p overexpression inhibited cell proliferation, which could block the cell cycle of A549 cell line in the G0/G1 phase. Moreover, overexpression of miR-195-5p increased cell apoptotic rate of A549 cell lines, with the expression of pro-apoptotic protein Bax up-regulated and that of the anti-apoptotic protein Bcl-2 down-regulated. The Dual-Luciferase assay showed that miR-195-5p could specifically target CEP55. Furthermore, CEP55 was down-regulated in NSCLC cells. Overexpression of CEP55 enhanced the proliferation and colony formation ability of A549 cell line. Overexpression of CEP55 can reverse the inhibitory effect of miR-195-5p. Conclusion MiR-195-5p inhibits proliferation and induces apoptosis of NSCLC cells by negatively regulating CEP55.
Collapse
Affiliation(s)
- Jianhua Luo
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Junsu Pan
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Yan Jin
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Mengyuan Li
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Miao Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| |
Collapse
|
21
|
Li H, Hong J, Wijayakulathilaka WSMA. Long non-coding RNA SNHG4 promotes cervical cancer progression through regulating c-Met via targeting miR-148a-3p. Cell Cycle 2019; 18:3313-3324. [PMID: 31590627 DOI: 10.1080/15384101.2019.1674071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long non-coding RNA (lncRNA) SNHG4 has been shown to be associated with the development of a variety of cancers. The purpose of this study was to investigate the effect of SNHG4 on cervical cancer (CC) and the corresponding mechanism. The qRT-PCR was used to determine the expressions of SNHG4 and miR-148a-3p in CC cell lines and tissues. Cell apoptosis and proliferation were measured by flow cytometry and MTT assay, respectively. The interaction between SNHG4, miR-148a-3p and c-Met was verified by bioinformatics, dual-luciferase reporter gene and RNA immunoprecipitation (RIP), and the effect of SNHG4 on the growth of CC tumor in vivo was explored. The expression of SNHG4 was increased in both CC cell lines and tissues, while the expression of miR-148a-3p was down-regulated. Meanwhile, silencing SNHG4 remarkably inhibited CC cell proliferation and promoted apoptosis. In addition, miR-148a-3p was a direct target gene of SNHG4, and down-regulation of miR-148a-3p could observably reverse the effect of silencing SNHG4 on the proliferation and apoptosis of CC cells. More importantly, SNHG4 could up-regulate the expression of c-Met by targeting and interacting with miR-148a-3p. Finally, in vivo experiments confirmed that silence SNHG4 down-regulated the expression of c-Met by promoting miR-148a-3p, and ultimately suppressed the growth of CC tumor in vivo. In conclusion, SNHG4 could be used as a competitive endogenous RNA to bind to miR-148a-3p, thereby up-regulating the expression of c-Met and ultimately promoting the progression of CC, which provided a potential therapeutic target for the targeted treatment of CC.
Collapse
Affiliation(s)
- Hanchen Li
- Foreign Department-Department of Clinical Medicine, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| | - Jiang Hong
- Foreign Department-Department of Clinical Medicine, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| | | |
Collapse
|
22
|
Wu X, Peng L, Zhang Y, Chen S, Lei Q, Li G, Zhang C. Identification of Key Genes and Pathways in Cervical Cancer by Bioinformatics Analysis. Int J Med Sci 2019; 16:800-812. [PMID: 31337953 PMCID: PMC6643108 DOI: 10.7150/ijms.34172] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is a common malignant tumour of the female reproductive system that seriously threatens the health of women. The aims of this study were to identify key genes and pathways and to illuminate new molecular mechanisms underlying cervical cancer. Altogether, 1829 DEGs were identified, including 794 significantly down-regulated DEGs and 1035 significantly up-regulated DEGs. GO analysis suggested that the up-regulated DEGs were mainly enriched in mitotic cell cycle processes, including DNA replication, organelle fission, chromosome segregation and cell cycle phase transition, and that the down-regulated DEGs were primarily enriched in development and differentiation processes, such as tissue development, epidermis development, skin development, keratinocyte differentiation, epidermal cell differentiation and epithelial cell differentiation. KEGG pathway analysis showed that the DEGs were significantly enriched in cell cycle, DNA replication, the p53 signalling pathway, pathways in cancer and oocyte meiosis. The top 9 hub genes with a high degree of connectivity (over 72 in the PPI network) were down-regulated TSPO, CCND1, and FOS and up-regulated CDK1, TOP2A, CCNB1, PCNA, BIRC5 and MAD2L1. Module analysis indicated that the top 3 modules were significantly enriched in mitotic cell cycle, DNA replication and regulation of cell cycle (P < 0.01). The heat map based on TCGA database preliminarily demonstrated the expression change of the key genes in cervical cancer. GSEA results were basically coincident with the front enrichment analysis results. By comprehensive analysis, we confirmed that cell cycle was a key biological process and a critical driver in cervical cancer. In conclusion, this study identified DEGs and screened the key genes and pathways closely related to cervical cancer by bioinformatics analysis, simultaneously deepening our understanding of the molecular mechanisms underlying the occurrence and progression of cervical cancer. These results might hold promise for finding potential therapeutic targets of cervical cancer.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Li Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yaqin Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Shilian Chen
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Qian Lei
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Guancheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Chaoyang Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Division of Functional Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, Bokharaei-Salim F, Karampoor S, Jafari A, Asemi Z, Tbibzadeh A, Namdar A, Mirzaei H. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234:17064-17099. [PMID: 30891784 DOI: 10.1002/jcp.28457] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Brujen, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Zhang Y, Yang Y, Liu R, Meng Y, Tian G, Cao Q. Downregulation of microRNA-425-5p suppresses cervical cancer tumorigenesis by targeting AIFM1. Exp Ther Med 2019; 17:4032-4038. [PMID: 30988784 PMCID: PMC6447898 DOI: 10.3892/etm.2019.7408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022] Open
Abstract
Although microRNA-425-5p (miR-425-5p) has been previously revealed to be upregulated in cervical cancer, the cellular function of miR-425-5p in cervical cancer remains unknown. The aim of the current study was to investigate the cellular function of miR-425-5p and its underlying mechanism in cervical cancer. Reverse transcription-quantitative polymerase chain reaction was used to measure miR-425-5p expression in several cervical cancer cell lines. TargetScan bioinformatics analysis was used to predict apoptosis-inducing factor mitochondria-associated 1 (AIFM1) as a novel target of miR-425-5p, and this was verified by dual-luciferase reporter assay. Furthermore, cell transfections were used to investigate the role of miR-425-5p in cervical cancer. The effect of miR-425-5p on cell viability and apoptosis in HeLa cells was detected by MTT assay and flow cytometry, respectively. The present study demonstrated that miR-425-5p was significantly upregulated in cervical cancer cell lines. In addition, AIFM1 was identified as a direct target of miR-425-5p and negatively regulated by miR-425-5p. Downregulation of miR-425-5p inhibited HeLa cell viability and induced cell apoptosis. Furthermore, downregulation of miR-425-5p significantly increased the protein and mRNA expression levels of cytochrome c, caspase-3, caspase-9 and DNA damage regulated autophagy modulator 1. The effects of miR-425-5p inhibition on HeLa cell viability and apoptosis were significantly reversed by AIFM1 knockdown. In conclusion, the present study demonstrated that miR-425-5p was upregulated in cervical cancer, and downregulation of miR-425-5p inhibited cervical cancer cell growth by targeting AIFM1.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuxiu Yang
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Rongxia Liu
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yucui Meng
- Department of Epidemiology, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Geng Tian
- Department of Reproductive Medicine, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Qinying Cao
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
25
|
Wang QM, Lian GY, Song Y, Huang YF, Gong Y. LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci 2019; 231:116335. [PMID: 30898647 DOI: 10.1016/j.lfs.2019.03.040] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND PD-L1 enhanced the tumorigenesis and immune escape abilities of cancers. The upstream mechanisms of PD-L1 in regulating tumorigenesis and immune escape of diffuse large B cell lymphoma (DLBCL) remained unclear. METHODS Human DLBCL cell line OCI-Ly10 and DLBCL patient samples were used in this study. MALAT1 was knocked down by shRNA. MiR-195 was inhibited by miR-195 inhibitor. Levels of MALAT1, PD-L1, miR-195 and CD8 were detected by RT-qPCR. Protein levels of PD-L1, Ras, p-ERK1/2, ERK1/2, Slug, E-cadherin, N-cadherin, Vimentin were detected by western blotting. The interaction between MALAT1 and miR-195, miR-195 and PD-L1 were detected by luciferase assay. OCI-Ly10 cell proliferation and apoptosis were detected by MTT and Annexin V/PI assays, respectively. Migration was detected by transwell assay. Cytotoxicity of CD8+ T cells was detected by LDH cytotoxicity kit. Proliferation and apoptosis of CD8+ T cell co-cultured with OCI-Ly10 cells were analyzed by CFSE and Annexin V/PI staining. RESULTS MALAT1, PD-L1 and CD8 were up-regulated in DLBCL tissues while miR-195 was down-regulated. MiR-195 was negatively correlated with MALAT1 and PD-L1. MALAT1 could sponge miR-195 to regulate the expression of PD-L1. shMALAT1 treatment increased miR-195 level and decreased PD-L1 level. It also inhibited cell proliferation, migration and immune escape ability while increased apoptosis ratio of OCI-Ly10 cells. shMALAT1 treatment in OCI-Ly10 cells also promoted proliferation and inhibited apoptosis of CD8+ T cells. Knocking down of MALAT1 also suppressed EMT-like process via Ras/ERK signaling pathway. These effects were all rescued by miR-195 inhibitor. CONCLUSION Long non-coding RNA MALAT1 sponged miR-195 to regulate proliferation, apoptosis and migration and immune escape abilities of DLBCL by regulation of PD-L1.
Collapse
Affiliation(s)
- Qing-Ming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| | - Guang-Yu Lian
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yan-Fang Huang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yi Gong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
26
|
Du H, Chen Y. Competing endogenous RNA networks in cervical cancer: function, mechanism and perspective. J Drug Target 2019; 27:709-723. [PMID: 30052083 DOI: 10.1080/1061186x.2018.1505894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past several years, competing endogenous RNAs (ceRNAs) have emerged as a potential class of post-transcriptional regulators that alter gene expression through a microRNA (miRNA)-mediated mechanism. An increasing number of studies have found that ceRNAs play important roles in tumorigenesis. Cervical cancer is one of the most common cancers in female malignancies. Despite advances in our understanding of this neoplasm, patients with advanced cervical cancer still have poor prognosis. There is an urgent need to provide a new insight on the mechanism of cervical cancer development and may be acted as new anticancer therapeutic strategies. Here, we review the ceRNA studies and coherent researches in cervical cancer, especially in long non-coding RNA (lncRNA) and miRNAs in order to broaden horizons into mechanisms, selection biomarkers for diagnosis as well as predicting prognosis, and targeting treatment for cervical cancer in the future.
Collapse
Affiliation(s)
- Hui Du
- a Department of Obstetrics and Gynecology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Ying Chen
- b Department of Gynecologic Oncology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , China.,c Key Laboratory of Cancer Prevention and Therapy , Tianjin , China.,d National Clinical Research Centre of Cancer , Tianjin , China
| |
Collapse
|
27
|
Yang X, Yan Z, Yang H, Ni H, Zhang L, Wang Y. Clinical value of combined detection of miR-1202 and miR-195 in early diagnosis of cervical cancer. Oncol Lett 2019; 17:3387-3391. [PMID: 30867774 PMCID: PMC6396133 DOI: 10.3892/ol.2019.9956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022] Open
Abstract
The clinical value of the combined detection of miR-1202 and miR-195 in the early diagnosis of cervical cancer was studied. A retrospective analysis of 70 cervical cancer patients treated in the The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital from October 2015 to December 2017 was performed, and the lesion tissues were used as the experimental group. Normal cervical tissues from another 67 healthy females confirmed by physical examination at the same period were selected as the control group. The FIGO staging criteria were used for staging of the cervical cancer patients, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method was used for the detection of the expression of miR-1202 and miR-195 in different tissues, and the receiver operating curve (ROC) was used for the analysis of the application values of miR-1202 and miR-195 diagnosis alone and their combined diagnosis in early cervical cancer patients. The levels of miR-1202 and miR-195 in the experimental group were lower than those in the control group (P<0.05). The differences were significant in the different stages of cervical cancer tissues (P<0.05). The later the staging of cervical cancer tissues were, the lower the levels of miR-1202 and miR-195 were. The sensitivities and area under the curve (AUC) values of miR-1202 and miR-195 in the combined diagnosis of early cervical cancer were significantly higher than those of miR-1202 and miR-195 alone. The expression levels of miR-1202 and miR-195 in the cervical cancer patients are different in different stages. Guiding clinical treatment and prognosis according to the results of combined detection is beneficial for the development of treatment for cervical cancer patients and for prognostic judgement, worthy of popularization and application.
Collapse
Affiliation(s)
- Xielan Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650106, P.R. China
| | - Zhiling Yan
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650106, P.R. China
| | - Hongying Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650106, P.R. China
| | - Huijing Ni
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650106, P.R. China
| | - Lei Zhang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650106, P.R. China
| | - Yufeng Wang
- Department of Oncology for the Elderly, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650106, P.R. China
| |
Collapse
|
28
|
Retracted
: Ailanthone exerts an antitumor function on the development of human lung cancer by upregulating microRNA‐195. J Cell Biochem 2018; 120:10444-10451. [DOI: 10.1002/jcb.28329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022]
|
29
|
Guo X, Xiao H, Guo S, Li J, Wang Y, Chen J, Lou G. Long noncoding RNA HOTAIR knockdown inhibits autophagy and epithelial-mesenchymal transition through the Wnt signaling pathway in radioresistant human cervical cancer HeLa cells. J Cell Physiol 2018; 234:3478-3489. [PMID: 30367473 DOI: 10.1002/jcp.26828] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
Abstract
Cervical cancer is one of the most common female malignancies around the world, and radiation resistance is a major obstacle to cancer therapy. Previously, overexpression of the long noncoding ribonucleic acid (RNA) (lncRNA) HOX transcript antisense RNA (HOTAIR) has been found to be associated with the invasion and metastasis capacities of several epithelial cancers, including cervical cancer. To gain insights into the molecular mechanisms of HOTAIR in cervical cancer resistance to radiotherapy, we investigated cellular autophagy and epithelial-to-mesenchymal transition (EMT) in radioresistant human cervical cancer HeLa cells when HOTAIR was suppressed. HOTAIR levels were quantified in cancerous and noncancerous cervical tissues obtained from 108 patients with cervical cancer. Next, we inhibited HOTAIR by RNA interference and activated the Wnt signaling pathway by LiCl in radioresistant HeLa cells to investigate the regulatory mechanisms for the HOTAIR mediating Wnt signaling pathway. We determined that the upregulated HOTAIR may contribute to cervical cancer progression. We found that the short interfering ribonucleic acid (siRNA)-mediated knockdown of HOTAIR disturbed the Wnt signaling pathway, reduced autophagy, inhibited EMT, decreased cell proliferation, and induced apoptosis in radioresistant HeLa cells. It is worthy to note that the combination treatment of siRNA-HOTAIR and LiCl demonstrated that the activation of the Wnt signaling pathway is responsible for the beneficial effect of HOTAIR knockdown in enhancing sensitivity to radiotherapy in radioresistant HeLa cells. Together, our results revealed an important role of HOTAIR in regulating cervical cancer resistance to radiotherapy. Functional suppression of HOTAIR could enhance sensitivity to radiotherapy by reduction of autophagy and reversal of EMT through the suppression of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Xinggang Guo
- Department of General surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongqi Xiao
- Department of General surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sihong Guo
- Department of Clinical Chinese Medicine Integrative With Western Medicine, International Education College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuxia Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
30
|
Yu W, Liang X, Li X, Zhang Y, Sun Z, Liu Y, Wang J. MicroRNA-195: a review of its role in cancers. Onco Targets Ther 2018; 11:7109-7123. [PMID: 30410367 PMCID: PMC6200091 DOI: 10.2147/ott.s183600] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to the 3′-UTR of target mRNAs. Recently, increasing evidence has highlighted their profound roles in various pathological processes, including human cancers. Deregulated miRNAs function as either oncogenes or tumor suppressor genes in multiple cancer types. Among them, miR-195 has been reported to significantly impact oncogenicity in various neoplasms by binding to critical genes and signaling pathways, enhancing or inhibiting the progression of cancers. In this review, we focus on the expression of miR-195 in regulatory mechanisms and tumor biological processes and discuss the future potential therapeutic implications of diverse types of human malignancies.
Collapse
Affiliation(s)
- Wanpeng Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Zhenqing Sun
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Liu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Jianxun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| |
Collapse
|
31
|
Liu B, Liu Y, Luo X, Pan Y, Yang L, Li F, Gao R, Chen W, He J. MicroRNA-195 as a diagnostic biomarker in human cancer detection: A meta-analysis. Oncol Lett 2018; 16:6253-6260. [PMID: 30405760 PMCID: PMC6202545 DOI: 10.3892/ol.2018.9489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) show great promise as novel cancer biomarkers. Several studies have revealed an association between abnormal miRNA expression and the risk of various cancer types. However, the diagnostic accuracy and reliability of miRNAs remains unclear. The present meta-analysis was performed to summarize the overall diagnostic performance of miR-195 for cancer. The PubMed, Cochrane Library, Wanfang and China National Knowledge Infrastructure databases were searched for associated literature published until December 10, 2017. Eligible studies were selected using multiple search strategies based on study selection criteria. Measures, including sensitivity and specificity, of the performance of miR-195 as a cancer diagnostic tool were pooled using bivariate meta-analysis models. All analyses were performed using Stata 14.0. The pooled analysis included 8 studies comprising 735 cases and 547 controls. The pooled diagnostic results calculated from all studies were as follows: Sensitivity, 0.79 [95% confidence interval (CI), 0.69–0.87]; specificity, 0.84 (95% CI, 0.68–0.93); positive likelihood ratio, 4.9 (95% CI, 2.50–9.50); negative likelihood ratio, 0.25 (95% CI, 0.18–0.35); diagnostic odds ratio, 20 (95% CI, 10.00–38.00); and area under the curve, 0.87 (95% CI, 0.84–0.90). Deeks' funnel plot asymmetry test suggested no potential publication bias (P=0.53). The present meta-analysis indicated that miR-195 could be a reliable non-invasive biomarker for the diagnosis of cancer. Further large-scale prospective studies are necessary to confirm the present findings and the clinical value of miR-195 for future diagnostics.
Collapse
Affiliation(s)
- Baoer Liu
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yuhan Liu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Xueying Luo
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yue Pan
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Liping Yang
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Feng Li
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Rui Gao
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Weicai Chen
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jinsong He
- Department of Breast Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China.,Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
32
|
Hong Z, Zhang R, Qi H. Diagnostic and prognostic relevance of serum miR-195 in pediatric acute myeloid leukemia. Cancer Biomark 2018; 21:269-275. [PMID: 29226854 DOI: 10.3233/cbm-170327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNA-195 acts as a tumor suppressor in a variety of cancers. However, its clinical significance in pediatric acute myeloid leukemia (AML) remains largely undefined. OBJECTIVE To investigate the diagnostic and prognostic relevance of miR-195 in this malignancy. METHODS Expression levels of miR-195 in peripheral blood and bone marrow samples of patients with pediatric AML and normal controls were detected by real-time quantitative PCR. Then, receiver-operating characteristic (ROC) curve analysis, Kaplan-Meier method, and Cox regression analysis were performed to evaluate the diagnostic and prognostic relevance of serum miR-195 in pediatric AML. RESULTS Compared to normal controls, the expression levels of miR-195 in both bone marrow and patients' sera were significantly decreased (both P< 0.001). In addition, serum miR-195 had an optimal diagnostic cut-off point (2.09) for pediatric AML with sensitivity of 68.87% and specificity of 96.23%. The area under the ROC curve (AUC) based on serum miR-195 was 0.910. Moreover, patients with low serum miR-195 level more often had French-American-British classification subtype M7 (P= 0.02), unfavorable karyotypes (P= 0.01), and shorter relapse-free and overall survivals (both P= 0.001) than those with high serum miR-195 level. Furthermore, the multivariate analysis identified serum miR-195 level as an independent prognostic factor for both relapse-free and overall survivals. CONCLUSION The findings of this study suggest that the aberrant expression of miR-195 may play crucial roles in the development and progression of pediatric AML patients. Serum miR-195 may serve as a promising marker for monitoring the occurrence of this disease and predicting the clinical outcome of patients.
Collapse
|
33
|
Zhong J, Yuan H, Xu X, Kong S. MicroRNA‑195 inhibits cell proliferation, migration and invasion by targeting defective in cullin neddylation 1 domain containing 1 in cervical cancer. Int J Mol Med 2018; 42:779-788. [PMID: 29750306 PMCID: PMC6034917 DOI: 10.3892/ijmm.2018.3660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs), a class of small non-coding RNAs, have been demonstrated to perform promoting or suppressive roles in various types of human malignancy. Deregulation of miR-195 has been observed in numerous types of human cancer, including cervical cancer; however, the detailed molecular mechanism of miR-195 underlying the malignant progression of cervical cancer remains largely unclear. In the present study, miR-195 was significantly down-regulated in cervical cancer tissue samples compared with adjacent non-tumor tissue samples, and the reduced expression level of miR-195 was associated with node metastasis and an advanced clinical stage in cervical cancer. Furthermore, the patients with low miR-195 expression levels demonstrated shorter survival times when compared with those with high miR-195 expression levels. In vitro experiments indicated that miR-195 exerted suppressive effects on the proliferation, migration and invasion of cervical cancer cells. Luciferase reporter gene assay identified defective in cullin neddylation 1 domain containing 1 (DCUN1D1) as a novel target gene of miR-195 and the expression level of DCUN1D1 was identified to be negatively regulated by miR-195 in cervical cancer cells. DCUN1D1 was significantly upregulated in cervical cancer, with a negative correlation to miR-195 expression. Furthermore, upregulation of DCUN1D1 was associated with the malignant progression and poor prognosis of cervical cancer. DCUN1D1 overexpression attenuated the suppressive effects of miR-195 on the malignant phenotypes of cervical cancer cells. Notably, the expression levels of miR-195 were significantly lower in HeLa [human papilloma virus (HPV)18+] and SiHa (HPV16+) cells compared with those in C33A (HPV−) cells, and knockdown of E6 using small interfering RNA significantly increased the miR-195 expression while the DCUN1D1 expression level was reduced in HeLa and SiHa cells. Thus, these findings indicate that miR-195 exerts a suppressive role in cervical cancer by targeting DCUN1D1. Therefore, miR-195 may present as a potential therapeutic candidate for cervical cancer.
Collapse
Affiliation(s)
- Jinyan Zhong
- Department of Gynecology, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hui Yuan
- Department of Gynecology, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiangqian Xu
- Department of Gynecology, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shoufang Kong
- Department of Gynecology, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
34
|
Ma X, Zou L, Li X, Chen Z, Lin Q, Wu X. MicroRNA-195 regulates docetaxel resistance by targeting clusterin in prostate cancer. Biomed Pharmacother 2018; 99:445-450. [DOI: 10.1016/j.biopha.2018.01.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
|
35
|
Srivastava SK, Ahmad A, Zubair H, Miree O, Singh S, Rocconi RP, Scalici J, Singh AP. MicroRNAs in gynecological cancers: Small molecules with big implications. Cancer Lett 2017; 407:123-138. [PMID: 28549791 PMCID: PMC5601032 DOI: 10.1016/j.canlet.2017.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Gynecological cancers (GCs) are often diagnosed at advanced stages, limiting the efficacy of available therapeutic options. Thus, there remains an urgent and unmet need for innovative research for the efficient clinical management of GC patients. Research over past several years has revealed the enormous promise of miRNAs. These small non-coding RNAs can aid in the diagnosis, prognosis and therapy of all major GCs, viz., ovarian cancers, cervical cancers and endometrial cancers. Mechanistic details of the miRNAs-mediated regulation of multiple biological functions are under constant investigation, and a number of miRNAs are now believed to influence growth, proliferation, invasion, metastasis, chemoresistance and the relapse of different GCs. Modulation of tumor microenvironment by miRNAs can possibly explain some of their reported biological effects. miRNA signatures have been proposed as biomarkers for the early detection of GCs, even the various subtypes of individual GCs. miRNA signatures are also being pursued as predictors of response to therapies. This review catalogs the knowledge gained from collective studies, so as to assess the progress made so far. It is time to ponder over the knowledge gained, so that more meaningful pre-clinical and translational studies can be designed to better realize the potential that miRNAs have to offer.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Orlandric Miree
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Rodney P Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Scalici
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
36
|
miR-195-5p Suppresses the Proliferation, Migration, and Invasion of Oral Squamous Cell Carcinoma by Targeting TRIM14. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7378148. [PMID: 29204446 PMCID: PMC5674489 DOI: 10.1155/2017/7378148] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) play an essential role in tumor biological processes through interacting with specific gene targets. The involvement of miR-195-5p in cell proliferation, invasion, and migration has been demonstrated in several cancer cell lines, while its function in oral squamous cell carcinoma (OSCC) remains unclear. Here we find that miR-195-5p expression is lower in OSCC than in nontumor tissues, while its overexpression in cell lines can lead to the promotion of apoptosis and the reduction of cell growth, migration, and invasion. Moreover, we identify the tripartite motif-containing protein (TRIM14) as a target of miR-195-5p. Therefore, we reason that the tumor suppressor role of miR-195-5p in OSCC is dependent on the interaction with TRIM14.
Collapse
|
37
|
Ye R, Wei B, Li S, Liu W, Liu J, Qiu L, Wu X, Zhao Z, Li J. Expression of miR-195 is associated with chemotherapy sensitivity of cisplatin and clinical prognosis in gastric cancer. Oncotarget 2017; 8:97260-97272. [PMID: 29228608 PMCID: PMC5722560 DOI: 10.18632/oncotarget.21919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/21/2017] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer has higher morbidity and mortality than other cancers for the low diagnosis rate and few therapies. MiR-195 has been reported to be involved in the occurrence, development and prognosis of various cancers. However, the function of miR-195 in gastric cancer remains largely unknown. Herein, the aims of this study were to probe the functional mechanism of miR-195 and its chemotherapy sensitivity as well as clinical prognosis in gastric cancer. We screened out low-expressed miR-195 through microarray analysis and further confirmed miR-195 was widely down-regulated in gastric cancer cells. Subsequently, AKT3 was identified as the direct target gene of miR-195 by target gene prediction software, dual luciferase reporter assay and western blot. Functional assays indicated that miR-195 acted as a tumor suppressor through regulating the proliferative, migrated and invasive properties of gastric cancer cells in vitro, and intratumoral delivery of miR-195 significantly suppressed tumor growth in vivo. Additionally, we also found miR-195 overexpression could enhance the chemotherapy sensitivity of cisplatin in gastric cancer cells and prolong the overall survival and progression free survival of gastric cancer patients. Collectively, our findings demonstrate miR-195 may be of great significance on early diagnosis of gastric cancer, providing the theoretical basis for prognosis and recurrence risk.
Collapse
Affiliation(s)
- Rui Ye
- Department of Oncology, Beidaihe Sanatorium of Beijing Military Command, Qinhuangdao 066100, Hebei, P.R. China.,Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P.R. China
| | - Wei Liu
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100853, P.R. China
| | - Juntao Liu
- Department of General Thoracic Surgery, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Luan Qiu
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xuan Wu
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhifei Zhao
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jianxiong Li
- Department of Radiotherapy, Hainan Branch of Chinese PLA General Hospital, Sanya 572000, Hainan, P.R. China
| |
Collapse
|
38
|
Chang M, Lin H, Fu H, Wang B, Han G, Fan M. MicroRNA-195-5p Regulates Osteogenic Differentiation of Periodontal Ligament Cells Under Mechanical Loading. J Cell Physiol 2017; 232:3762-3774. [PMID: 28181691 DOI: 10.1002/jcp.25856] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022]
Abstract
Osteogenic differentiation and bone formation are tightly regulated by several factors, including microRNAs (miRNAs). However, miRNA expression patterns and function during mechanical loading-induced osteogenic differentiation of human periodontal ligament cells (PDLCs) remain unclear. Here, we investigated the differential expression of miRNA-195-5p in the periodontal tissues of mice under orthodontic mechanical loading and in primary human PDLCs exposed to a simulated tension strain. The miR-195-5p was observed to be down-regulated and negatively correlated with osteogenic differentiation. Overexpression of miR-195-5p significantly inhibited PDLC differentiation under cyclic tension strain (CTS), whereas the functional inhibition of miR-195-5p yielded an opposite effect. Further experiments confirmed that WNT family member 3A (WNT3A), fibroblast growth factor 2 (FGF2), and bone morphogenetic protein receptor-1A (BMPR1A), proteins important for osteogenic activity and stability, were direct targets of miR-195-5p. Mechanical loading increased the WNT3A, FGF2, and BMPR1A protein levels, while miR-195-5p inhibited WNT3A, FGF2, and BMPR1A protein expression. WNT, FGF, and BMP signaling were involved in osteogenic differentiation of PDLCs under CTS. Further study confirmed that reintroduction of WNT3A and BMPR1A can rescue the inhibition of miR-195-5p on osteogenic differentiation of PDLCs. Our findings are the first to demonstrate that miR-195-5p is a mechanosensitive gene that plays an important role in mechanical loading-induced osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Maolin Chang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haidi Fu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Beike Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingwen Fan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
miR-195 Regulates Proliferation and Apoptosis through Inhibiting the mTOR/p70s6k Signaling Pathway by Targeting HMGA2 in Esophageal Carcinoma Cells. DISEASE MARKERS 2017; 2017:8317913. [PMID: 28487599 PMCID: PMC5402242 DOI: 10.1155/2017/8317913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
Abstract
miR-195 is related to tumorigenesis and frequently inhibits cell proliferation and promotes apoptosis in various cancers, including esophageal carcinoma (EC). The mTOR/p70s6k signaling pathway, which is the major target pathway for HMGA2, regulates the survival and cell proliferation of many tumors and is commonly active in EC. The relationships of miR-195, HMGA2, and the mTOR/p70s6k signaling pathway in EC, however, remain unknown. In the present study, we found that the miR-195 level was significantly downregulated in EC tissues, while the mRNA expressions of HMGA2 were significantly upregulated. Dual-luciferase reporter assay demonstrated that HMGA2 is a target of miR-195. MTT assay and flow cytometry revealed that miR-195 overexpression inhibited cell proliferation and induced apoptosis by targeting HMGA2. We also found that HMGA2 restored the inhibitory effect of miR-195 on phosphorylation of mTOR and p70S6K. Furthermore, rapamycin, a specific inhibitor of the mTOR/p70S6K signaling pathway, decreased the levels of Ki-67 and Bcl-2/Bax ratio, inhibited cell proliferation, and promoted apoptosis in EC cells. In conclusion, upregulation of miR-195 significantly suppressed cell growth and induced apoptosis of EC cells via suppressing the mTOR/p70s6k signaling pathway by targeting HMGA2.
Collapse
|
40
|
Zhang M, Wu W, Gao M, Zhang J, Ding X, Zhu R, Chen H, Fei Z. Coactivator-associated arginine methyltransferase 1 promotes cell growth and is targeted by microRNA-195-5p in human colorectal cancer. Tumour Biol 2017; 39:1010428317694305. [PMID: 28345460 DOI: 10.1177/1010428317694305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pathogenesis of colorectal cancer remains poorly understood. Here, we show that coactivator-associated arginine methyltransferase 1 is frequently upregulated in colorectal cancer tissues and promotes cell growth in vitro and in vivo. Using bioinformatics-based prediction and luciferase reporter system, we found that coactivator-associated arginine methyltransferase 1 is post-transcriptionally targeted by microRNA-195-5p in colorectal cancer. Ectopic expression of microRNA-195-5p led to the suppression of the coactivator-associated arginine methyltransferase 1 3'-untranslated regions activity and downregulation of the endogenous coactivator-associated arginine methyltransferase 1 protein in colorectal cancer cells. Expression analysis verified that microRNA-195-5p was markedly downregulated in human colorectal cancer tissues, which was negatively correlated with the elevated levels of coactivator-associated arginine methyltransferase 1 protein. Enhanced levels of microRNA-195-5p in colorectal cancer cells resulted in a sharp reduction of cell proliferative and colony-formative capacities in vitro. Remarkably, restoration of coactivator-associated arginine methyltransferase 1 in microRNA-195-5p-transfected colorectal cancer cells partially abrogated the inhibition of cell proliferation and colony formation mediated through microRNA-195-5p. These data confirm that microRNA-195-5p might function as an anti-tumor microRNA in colorectal cancer exerting critical control over coactivator-associated arginine methyltransferase 1 expression. The newly identified microRNA-195-5p/coactivator-associated arginine methyltransferase 1 axis may act as a novel promising therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Meifeng Zhang
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei Wu
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming Gao
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jie Zhang
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xinde Ding
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ronghua Zhu
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Haiqun Chen
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhewei Fei
- Department of General Surgery, Xinhua Hospital, Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
41
|
Shen CJ, Cheng YM, Wang CL. LncRNA PVT1 epigenetically silences miR-195 and modulates EMT and chemoresistance in cervical cancer cells. J Drug Target 2017; 25:637-644. [PMID: 28296507 DOI: 10.1080/1061186x.2017.1307379] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plasmacytoma variant translocation 1 gene (PVT1) is an oncogenic lncRNA with regulative effect on chemosensitivity in cervical cancer. However, the underlying mechanisms were not fully understood. In this study, HPV16 positive CaSki and SiHa cells were used as in vitro cell model. Knockdown of HPV16 E7 significantly inhibited PVT1 and restored miR-195 expression. PVT1 directly interacts with EZH2 and the complex anchors in the promoter region of miR-195. PVT1 overexpression resulted in increased H3K27me3 levels in the miR-195 promoter region, while PVT1 knockdown decreased H3K27me3 levels in the promoter region. In addition, PVT1 could competitively bind with miR-195. MiR-195 overexpression suppressed PVT1 expression in the cancer cells. Both PVT1 and miR-195 could inhibit paclitaxel (PTX) induced epithelial-to-mesenchymal transition (EMT) and also sensitize CaSki cells to PTX. Based on these findings, we infer that PVT1 could decrease miR-195 expression via enhancing histone H3K27me3 in the miR-195 promoter region and also via direct sponging of miR-195. In addition, the PVT1/miR-195 axis can modulate responses of the cancer cells to PTX via regulating EMT.
Collapse
Affiliation(s)
- Ching-Ju Shen
- a Department of Gynecology and Obstetrics , Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ya-Min Cheng
- b Department of Obstetrics and Gynecology , Institute of Clinical Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Chiu-Lin Wang
- c Department of Obstetrics and Gynecology , Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
42
|
Granados-López AJ, Ruiz-Carrillo JL, Servín-González LS, Martínez-Rodríguez JL, Reyes-Estrada CA, Gutiérrez-Hernández R, López JA. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development. Int J Mol Sci 2017; 18:ijms18020407. [PMID: 28216603 PMCID: PMC5343941 DOI: 10.3390/ijms18020407] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches.
Collapse
Affiliation(s)
- Angelica Judith Granados-López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Campus II, Zacatecas 98066, Mexico.
| | - José Luis Ruiz-Carrillo
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | | | - José Luis Martínez-Rodríguez
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | - Claudia Araceli Reyes-Estrada
- Doctorado en Ciencias Básicas en la Especialidad en Farmacología Médica y Molecular de la Unidad Académica de Medicina Humana y Ciencias de la Salud de la Universidad Autónoma de Zacateacas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Rosalinda Gutiérrez-Hernández
- Doctorado en Ciencias Básicas en la Especialidad en Farmacología Médica y Molecular de la Unidad Académica de Medicina Humana y Ciencias de la Salud de la Universidad Autónoma de Zacateacas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Jesús Adrián López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Campus II, Zacatecas 98066, Mexico.
| |
Collapse
|
43
|
Jin L, Li X, Li Y, Zhang Z, He T, Hu J, Liu J, Chen M, Shi M, Jiang Z, Gui Y, Yang S, Mao X, Lai Y. Identification of miR‑195‑3p as an oncogene in RCC. Mol Med Rep 2017; 15:1916-1924. [PMID: 28260025 DOI: 10.3892/mmr.2017.6198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that the deregulation of microRNAs (miRNAs; miRs) contributes to tumorigenesis. Previous studies have shown that miR‑195 is downregulated in various types of cancer. The present study aimed to investigate the function and expression levels of miR‑125b. Results of qPCR revealed that miR‑195‑3p, the mature sequence of miR‑195, was upregulated in renal cell carcinoma (RCC) tissues and cell lines (786‑O, 769P and ACHN). This indicated that the function and role of miR‑195‑3p may differ in different types of tumor. To assess the function of miR‑195‑3p in RCC cell lines, cell proliferation was examined using MTT and CCK‑8 assays, mobility was assessed using a cell scratch assay, Transwell migration assay and invasion assay, and apoptosis was examined using flow cytometry. These assessments were also performed in cells with upregulated or downregulated miR‑195‑3p via transfection with synthesized miR‑195‑3p mimic or inhibitor. The results revealed that the overexpression of miR‑195‑3p promoted 786‑O and ACHN RCC cell proliferation, migration and invasion, and inhibited cell apoptosis, whereas the downregulation of miR‑195‑3p suppressed cell proliferation, migration and invasion, and induced cell apoptosis. These results indicated that miR‑195‑3p was associated with the tumorigenesis of RCC, with further investigations to focus on the pathway and use of miR‑195‑3p as a clinical biomarker for RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Shi
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zhimao Jiang
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
44
|
Sun W, Wang Y, Cai M, Lin L, Chen X, Cao Z, Zhu K, Shuai X. Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Biomater Sci 2017; 5:2468-2479. [DOI: 10.1039/c7bm00866j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel liposomal system incorporating branched PEI was prepared to efficiently codeliver sorafenib and GPC3 siRNA for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Weitong Sun
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Yong Wang
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Mingyue Cai
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Liteng Lin
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Xiaoyan Chen
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Zhong Cao
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| |
Collapse
|
45
|
Aierken G, Seyiti A, Alifu M, Kuerban G. Knockdown of Tripartite-59 (TRIM59) Inhibits Cellular Proliferation and Migration in Human Cervical Cancer Cells. Oncol Res 2016; 25:381-388. [PMID: 27662486 PMCID: PMC7841184 DOI: 10.3727/096504016x14741511303522] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tripartite motif (TRIM) family of proteins is a class of highly conservative proteins that have been implicated in multiple processes. TRIM59, one member of the TRIM family, has now received recognition as a key regulator in the development and progression of human diseases. However, its role in human tumorigenesis has remained largely unknown. In this study, the effects of TRIM59 expression on cell proliferation and migration were investigated in human cervical cancer cells. The expression of TRIM59 in clinical cervical cancer tissues and cervical cancer cells was initially determined by RT-PCR and Western blot. Specific shRNA against TRIM59 was then employed to knock down the expression of TRIM59 in cervical cancer lines HeLa and SiHa. The effects of TRIM59 knockdown on cell proliferation was assessed by MTT assay and colony formation assay. Transwell assay was conducted to reveal cell migration and invasion abilities before and after TRIM59 knockdown. Our results showed that the expression of TRIM59 was significantly elevated in cervical cancers. Knockdown of TRIM59 significantly inhibited cell proliferation and colony formation as well as cell migration and invasion abilities in cervical cancer HeLa and SiHa cells. Cell cycle progression analysis showed that TRIM59-depleted cells preferred to accumulate in the S phase. These data suggest that TRIM59 is a potential target that promotes the progression of cervical cancer.
Collapse
|
46
|
Su K, Zhang T, Wang Y, Hao G. Diagnostic and prognostic value of plasma microRNA-195 in patients with non-small cell lung cancer. World J Surg Oncol 2016; 14:224. [PMID: 27733164 PMCID: PMC5062829 DOI: 10.1186/s12957-016-0980-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/13/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recently, circulating microRNAs (miRNAs) have been reported to be stably detectable in plasma/serum and to function as potent biomarkers in various cancers. The aim of this study was to evaluate the expression level of plasma miRNA-195 in patients with non-small cell lung cancer (NSCLC) and investigate its diagnostic and prognostic value. METHODS Quantitative real-time PCR was performed to evaluate plasma miRNA-195 levels in 100 NSCLC patients and 100 healthy volunteers. The association between miRNA-195 expression and clinicopathological factors as well as the overall survival was analyzed. Receiver-operating characteristic (ROC) curve analysis was carried out to assess the potential value of plasma miRNA-195 for NSCLC diagnosis. RESULTS Plasma miRNA-195 was downregulated in NSCLC patients compared with healthy controls (P < 0.001). Decreased plasma miRNA-195 expression was significantly associated with lymph node metastasis and advanced clinical stage. ROC curve analysis showed that plasma miRNA-195 was a useful marker for NSCLC diagnosis. Multivariate Cox regression analysis confirmed low plasma miRNA-195 expression as an independent unfavorable prognostic factor for NSCLC patients. CONCLUSIONS These findings indicate that plasma miRNA-195 might serve as a promising biomarker for the early detection and prognosis evaluation of NSCLC.
Collapse
Affiliation(s)
- Keli Su
- Department of Oncology, The Fourth People's Hospital of Jinan, NO. 50, Shifan Road, Jinan, 250031, Shandong Province, China
| | - Tingcui Zhang
- Department of Internal Medicine, The Central Hospital of Jinan, Jinan, 250012, Shandong Province, China
| | - Yongrui Wang
- Department of Clinical Laboratory, The Fourth People's Hospital of Jinan, Jinan, 250031, Shandong Province, China
| | - Guijun Hao
- Department of Oncology, The Fourth People's Hospital of Jinan, NO. 50, Shifan Road, Jinan, 250031, Shandong Province, China.
| |
Collapse
|
47
|
Liu X, Wang F, Tian L, Wang T, Zhang W, Li B, Bai YA. MicroRNA-520b affects the proliferation of human glioblastoma cells by directly targeting cyclin D1. Tumour Biol 2015; 37:7921-8. [DOI: 10.1007/s13277-015-4666-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
|