1
|
Vicelić Čutura L, Vujčić M, Galušić D, Blaslov V, Petrić M, Miljak A, Lozić M, Benzon B, Vukojević K, Bubić T, Kunac N, Zjačić Puljiz D, Delić Jukić IK, Križanac M, Lozić B. SATB1 and p16 Expression and Prognostic Value in Croatian Hodgkin Lymphoma Patients: A Unicentric Study. Cells 2024; 13:1323. [PMID: 39195213 DOI: 10.3390/cells13161323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Hodgkin lymphoma (HL) is a rare lymphoid neoplasm in which Hodgkin/Reed-Stenberg (HRS) cells are admixed with a population of non-neoplastic inflammatory cells and fibrosis. Dysregulated expressions of cell cycle regulators and transcription factors have been proven as one of the hallmarks of HL. In that context, SATB1 and p16 have been reported as potential regulators of HL progression and survival. However, to date, no studies have assessed the expression levels of SATB1 and p16 in HL in Croatian patients or their prognostic values. Therefore, we investigated the expression pattern of SATB1 and p16 in paraffin-embedded lymph node biopsies using standard immunohistochemistry. We found that 21% of the patients stained positive for SATB1, while 15% of the patients displayed positive staining for p16. Furthermore, we aimed to understand the prognostic value of each protein through the analysis of the overall survival (OS) and progression-free survival (PFS). SATB1 showed a significantly positive correlation with better OS and PFS, while p16 expression had no impact. Interestingly, when patients were stratified by a combination of the two studied markers, we found that patients in the SATB1+/p16- group tended to have the best prognosis in HL, according to statistical significance. In conclusion, SATB1 and p16 might be potentially useful as diagnostic and prognostic markers for HL.
Collapse
Affiliation(s)
- Lučana Vicelić Čutura
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia
| | - Milan Vujčić
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia
| | - Davor Galušić
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia
| | - Viktor Blaslov
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia
| | - Marija Petrić
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia
| | - Antonija Miljak
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia
| | - Mirela Lozić
- Department of Biochemistry and Medical Chemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 8800 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Toni Bubić
- Department of Pathology, Judicial Medicine, and Cytology, Division of Pathology, University Hospital of Split, 21000 Split, Croatia
| | - Nenad Kunac
- Department of Pathology, Judicial Medicine, and Cytology, Division of Pathology, University Hospital of Split, 21000 Split, Croatia
| | - Danijela Zjačić Puljiz
- Department of Internal Medicine, Division of Nephrology and Haemodialysis, University Hospital of Split, 21000 Split, Croatia
| | - Ivana Kristina Delić Jukić
- Department of Internal Medicine, Division of Nephrology and Haemodialysis, University Hospital of Split, 21000 Split, Croatia
| | - Marinela Križanac
- Department of Pediatric Disease, Division of Haematology, Oncology, Clinical Immunology and Genetics, University Hospital of Split, 21000 Split, Croatia
| | - Bernarda Lozić
- Department of Pediatric Disease, Division of Haematology, Oncology, Clinical Immunology and Genetics, University Hospital of Split, 21000 Split, Croatia
- University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
2
|
Large-scale circular RNA deregulation in T-ALL: unlocking unique ectopic expression of molecular subtypes. Blood Adv 2021; 4:5902-5914. [PMID: 33259601 DOI: 10.1182/bloodadvances.2020002337] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs) are stable RNA molecules that can drive cancer through interactions with microRNAs and proteins and by the expression of circRNA encoded peptides. The aim of the study was to define the circRNA landscape and potential impact in T-cell acute lymphoblastic leukemia (T-ALL). Analysis by CirComPara of RNA-sequencing data from 25 T-ALL patients, immature, HOXA overexpressing, TLX1, TLX3, TAL1, or LMO2 rearranged, and from thymocyte populations of human healthy donors disclosed 68 554 circRNAs. Study of the top 3447 highly expressed circRNAs identified 944 circRNAs with significant differential expression between malignant T cells and normal counterparts, with most circRNAs displaying increased expression in T-ALL. Next, we defined subtype-specific circRNA signatures in molecular genetic subgroups of human T-ALL. In particular, circZNF609, circPSEN1, circKPNA5, and circCEP70 were upregulated in immature, circTASP1, circZBTB44, and circBACH1 in TLX3, circHACD1, and circSTAM in HOXA, circCAMSAP1 in TLX1, and circCASC15 in TAL-LMO. Backsplice sequences of 14 circRNAs ectopically expressed in T-ALL were confirmed, and overexpression of circRNAs in T-ALL with specific oncogenic lesions was substantiated by quantification in a panel of 13 human cell lines. An oncogenic role of circZNF609 in T-ALL was indicated by decreased cell viability upon silencing in vitro. Furthermore, functional predictions identified circRNA-microRNA gene axes informing modes of circRNA impact in molecular subtypes of human T-ALL.
Collapse
|
3
|
Peng S, Yang Q, Li H, Pan Y, Wang J, Hu P, Zhang N. CTSB Knockdown Inhibits Proliferation and Tumorigenesis in HL-60 Cells. Int J Med Sci 2021; 18:1484-1491. [PMID: 33628106 PMCID: PMC7893552 DOI: 10.7150/ijms.54206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Cathepsin B (CTSB) was well documented in solid tumors, up-regulated of CTSB expression is linked with progression of tumors. However, the study of CTSB in adult leukemia has not been reported. Methods: Total RNA was isolated from PBMC (peripheral blood mononuclear cell) of AML patients and healthy donors. qRT-PCR was performed to detect the expression of CTSB. The association of CTSB expression with the patients' overall survival (OS) and disease-free survival (DFS) were analyzed. Stable HL-60 CTSB-shRNA cell lines were established by retrovirus infection and puromycin selection. Cell proliferation was detected by CCK-8 analysis. Tumorigenesis ability was analyzed by soft agar and xenograft nude mice model. Western blot was performed to detect the expression of CTSB and the proteins of cell signaling pathway. Results: The mRNA expression level of CTSB was up-regulated in AML patients compared to healthy control (p<0.001), and CTSB expression was significantly higher in M1, M2, M4 and M5 AML samples than healthy control. The CTSB expression in AML was associated with WBC count (p=0.037). Patients with high CTSB expression had a relatively poor OS (p=0.007) and a shorter DFS (p=0.018). Moreover, the expression level of CTSB may act as an independent prognostic factor for both OS (p=0.011) and DFS (p=0.004). Knockdown CTSB expression in HL-60 cells could inhibit the cells' proliferation and tumorigeneses in vitro and in vivo. Further study showed knockdown CTSB expression in HL-60 cells could inactive the AKT signaling pathway. Conclusions: CTSB mRNA was upregulated in AML patients. CTSB overexpression was correlated with poor prognosis and may serve as an independent prognostic factor for both OS and DFS in AML patients. Knockdown CTSB expression in HL-60 cells could inhibit the cells' proliferation and tumorigenesis. The underlying mechanism may be the inhibition of the AKT signaling pathway.
Collapse
Affiliation(s)
- Sida Peng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.,Cell genetics laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Qingqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.,Cell genetics laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Huan Li
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Yuhang Pan
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Pan Hu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Nana Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| |
Collapse
|
4
|
Luo X, Xu L, Wu X, Tan H, Liu L. Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. Cancer Cell Int 2019; 19:134. [PMID: 31130823 PMCID: PMC6525380 DOI: 10.1186/s12935-019-0850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Special AT-rich sequence-binding protein 1 (SATB1) is a chromatin-remodeling protein that regulates gene expressions in different types of cancer. Up-regulation of SATB1 is linked with progression of tumors. Our previous study showed that SATB1 expression was decreased in T cell leukemia/lymphoma. The contrary roles of SATB1 in solid organ tumors and hematology malignancy may provide hints to study the function of SATB1. Methods To characterize SATB1 mRNA and protein expression in acute myeloid leukemia (AML), we performed qRT-PCR and Western blot on bone marrow mononuclear cells from 52 newly diagnosed AML patients. Stable HL-60 cell lines with knockdown of SATB1 by shRNAs sequences (HL-60 SATB1-shRNA1 and HL-60 SATB1-shRNA2) were established. Cell proliferation, cell cycle and cell invasiveness were analyzed. Murine model was established using HL-60 SATB1-shRNAs treated nude mice and tumorigenicity was compared to study the role of SATB1 in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown to investigate the mechanisms underlying the regulation of AML cell growth by SATB1. Results We found that SATB1 expression was significantly decreased in patients with AML compared to normal control, and was increased after complete remission of AML. Knockdown of SATB1 enhanced the proliferation of HL-60 cells and accelerated S phase entry in vitro, and promoted the tumor growth in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown and the differentially expressed genes were involved in NF-κB, MAPK and PI3 K/Akt signaling pathways. Nuclear NF-κB p65 levels were significantly increased in SATB1 depleted HL-60 cells. Conclusions Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. SATB1 could be a predictor for better response to treatment in AML.
Collapse
Affiliation(s)
- Xiaodan Luo
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lihua Xu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Xiaohong Wu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Huo Tan
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lian Liu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| |
Collapse
|
5
|
Fredholm S, Willerslev-Olsen A, Met Ö, Kubat L, Gluud M, Mathiasen SL, Friese C, Blümel E, Petersen DL, Hu T, Nastasi C, Lindahl LM, Buus TB, Krejsgaard T, Wasik MA, Kopp KL, Koralov SB, Persson JL, Bonefeld CM, Geisler C, Woetmann A, Iversen L, Becker JC, Ødum N. SATB1 in Malignant T Cells. J Invest Dermatol 2018; 138:1805-1815. [PMID: 29751003 DOI: 10.1016/j.jid.2018.03.1526] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/20/2022]
Abstract
Deficient expression of SATB1 hampers thymocyte development and results in inept T-cell lineages. Recent data implicate dysregulated SATB1 expression in the pathogenesis of mycosis fungoides, the most frequent variant of cutaneous T-cell lymphoma. Here, we report on a disease stage-associated decrease of SATB1 expression and an inverse expression of STAT5 and SATB1 in situ. STAT5 inhibited SATB1 expression through induction of microRNA-155. Decreased SATB1 expression triggered enhanced expression of IL-5 and IL-9 (but not IL-6 and IL-32), whereas increased SATB1 expression had the opposite effect, indicating that the microRNA-155 target SATB1 is a repressor of IL-5 and IL-9 in malignant T cells. In accordance, inhibition of STAT5 and its upstream activator JAK3 triggered increased SATB1 expression and a concomitant suppression of IL-5 and IL-9 expression in malignant T cells. In conclusion, we provide a mechanistic link between the proto-oncogenic JAK3/STAT5/microRNA-155 pathway, SATB1, and cytokines linked to CTCL severity and progression, indicating that SATB1 dysregulation is involved in cutaneous T-cell lymphoma pathogenesis.
Collapse
Affiliation(s)
- Simon Fredholm
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Özcan Met
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Linda Kubat
- Translational Skin Cancer Research, German Cancer Consortium (DKTK and DKFZ), Partner Site Essen, Essen, Germany
| | - Maria Gluud
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah L Mathiasen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Edda Blümel
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David L Petersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tengpeng Hu
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Terkild B Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharina L Kopp
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden; Division of Basal Tumor Biology, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Jürgen C Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK and DKFZ), Partner Site Essen, Essen, Germany.
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
The Role of Actin Dynamics and Actin-Binding Proteins Expression in Epithelial-to-Mesenchymal Transition and Its Association with Cancer Progression and Evaluation of Possible Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4578373. [PMID: 29581975 PMCID: PMC5822767 DOI: 10.1155/2018/4578373] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Metastasis causes death of 90% of cancer patients, so it is the most significant issue associated with cancer disease. Thus, it is no surprise that many researchers are trying to develop drugs targeting or preventing them. The secondary tumour site formation is closely related to phenomena like epithelial-to-mesenchymal and its reverse, mesenchymal-to-epithelial transition. The change of the cells' phenotype to mesenchymal involves the acquisition of migratory potential. Cancer cells movement is possible due to the development of invasive structures like invadopodia, lamellipodia, and filopodia. These changes are dependent on the reorganization of the actin cytoskeleton. In turn, the polymerization and depolymerization of actin are controlled by actin-binding proteins. In many tumour cells, the actin and actin-associated proteins are accumulated in the cell nucleus, suggesting that it may also affect the progression of cancer by regulating gene expression. Once the cancer cell reaches a new habitat it again acquires epithelial features and thus proliferative activity. Targeting of epithelial-to-mesenchymal or/and mesenchymal-to-epithelial transitions through regulation of their main components expression may be a potential solution to the problem of metastasis. This work focuses on the role of these processes in tumour progression and the assessment of therapeutic potential of agents targeting them.
Collapse
|