2
|
Jo DH, Kim JH, Kim JH. Targeting tyrosine kinases for treatment of ocular tumors. Arch Pharm Res 2018; 42:305-318. [PMID: 30470974 DOI: 10.1007/s12272-018-1094-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023]
Abstract
Uveal melanoma is the most common intraocular primary malignant tumor in adults, and retinoblastoma is the one in children. Current mainstay treatment options include chemotherapy using conventional drugs and enucleation, the total removal of the eyeball. Targeted therapies based on profound understanding of molecular mechanisms of ocular tumors may increase the possibility of preserving the eyeball and the vision. Tyrosine kinases, which modulate signaling pathways regarding various cellular functions including proliferation, differentiation, and attachment, are one of the attractive targets for targeted therapies against uveal melanoma and retinoblastoma. In this review, the roles of both types of tyrosine kinases, receptor tyrosine kinases and non-receptor tyrosine kinases, were summarized in relation with ocular tumors. Although the conventional treatment options for uveal melanoma and retinoblastoma are radiotherapy and chemotherapy, respectively, specific tyrosine kinase inhibitors will enhance our armamentarium against them by controlling cancer-associated signaling pathways related to tyrosine kinases. This review can be a stepping stone for widening treatment options and realizing targeted therapies against uveal melanoma and retinoblastoma.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Mao X, Chen Z, Zhao Y, Yu Y, Guan S, Woodfield SE, Vasudevan SA, Tao L, Pang JC, Lu J, Zhang H, Zhang F, Yang J. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma. Oncotarget 2018; 8:1555-1568. [PMID: 27902463 PMCID: PMC5352076 DOI: 10.18632/oncotarget.13657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma.
Collapse
Affiliation(s)
- Xinfang Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhenghu Chen
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ling Tao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan C Pang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Hu X, Shi S, Wang H, Yu X, Wang Q, Jiang S, Ju D, Ye L, Feng M. Blocking autophagy improves the anti-tumor activity of afatinib in lung adenocarcinoma with activating EGFR mutations in vitro and in vivo. Sci Rep 2017; 7:4559. [PMID: 28676644 PMCID: PMC5496850 DOI: 10.1038/s41598-017-04258-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Afatinib, a second-generation tyrosine kinase inhibitor (TKI), has been approved for the treatment of advanced EGFR-mutant non-small cell lung cancer (NSCLC). However, afatinib’s clinical application is still hampered by acquired resistance. Recently, autophagy is considered as an important mechanism of resistance to TKI. Herein, we investigated the autophagy induction as well as its influence on anti-lung adenocarcinoma activity of afatinib in two activating EGFR-mutants H1975 and H1650 cells. First, Growth inhibition and caspase-dependent apoptosis were observed in afatinib-treated H1975 and H1650 cells. Then we confirmed afatinib-induced autophagy in H1975 and H1650 cells. Importantly, autophagy inhibition using chloroquine (CQ) and 3-MA enhanced the cytotoxicity of afatinib, elucidating the cytoprotective role of autophagy in lung adenocarcinoma therapy with afatinib. Further study suggested that Akt/mTOR and Erk signaling pathways were involved in afatinib-induced autophagy, and reactive oxygen species (ROS) acted as an intracellular transducer regulating both autophagy and apoptosis in afatinib-treated H1975 and H1650 cells. Moreover, the in vivo experiment in xenograft model using H1975 cell line confirmed the enhanced anti-lung adenocarcinoma efficacy of afatinib when combined with autophagy inhibitor CQ. Thus, blocking autophagy may be a promising strategy to overcome resistance and increase sensitivity to afatinib in lung adenocarcinoma harboring activating EGFR mutations.
Collapse
Affiliation(s)
- Xiangxiang Hu
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Si Shi
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaochen Yu
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qian Wang
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shanshan Jiang
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Li Ye
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Meiqing Feng
- Department of Microbiological & Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|