1
|
Chen D, Wan B, Cheng Y, Luo Y, Bai X, Guo J, Li G, Jin T, Nie J, Liu W, Wang R. Carboxypeptidase E is a prognostic biomarker co-expressed with osteoblastic genes in osteosarcoma. PeerJ 2023; 11:e15814. [PMID: 37663298 PMCID: PMC10474831 DOI: 10.7717/peerj.15814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Osteosarcoma (OS) is a rare primary malignant bone tumor in adolescents and children with a poor prognosis. The identification of prognostic genes lags far behind advancements in treatment. In this study, we identified differential genes using mRNA microarray analysis of five paired OS tissues. Hub genes, gene set enrichment analysis, and pathway analysis were performed to gain insight into the pathway alterations of OS. Prognostic genes were screened using the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset, then overlapped with the differential gene dataset. The carboxypeptidase E (CPE) gene, found to be an independent risk factor, was further validated using RT-PCR and Gene Expression Omnibus (GEO) datasets. Additionally, we explored the specific expression of CPE in OS tissues by reanalyzing single-cell genomics. Interestingly, CPE was found to be co-expressed with osteoblast lineage cell clusters that expressed RUNX2, SP7, SPP1, and IBSP marker genes in OS. These results suggest that CPE could serve as a prognostic factor in osteoblastic OS and should be further investigated as a potential therapeutic target.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ben Wan
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Yuning Cheng
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuwen Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xueshan Bai
- Cranio-Maxillo-Facial Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guangping Li
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Tao Jin
- Depatment of Orthopaedic Oncology Surgery, National Center for Orthopaedics, Beijing JiShuiTan Hospital, Capital Medical University, Beijing, China
| | - Jingjun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Weifeng Liu
- Depatment of Orthopaedic Oncology Surgery, National Center for Orthopaedics, Beijing JiShuiTan Hospital, Capital Medical University, Beijing, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Hareendran S, Yang X, Sharma VK, Loh YP. Carboxypeptidase E and its splice variants: Key regulators of growth and metastasis in multiple cancer types. Cancer Lett 2022; 548:215882. [PMID: 35988818 PMCID: PMC9532369 DOI: 10.1016/j.canlet.2022.215882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Mechanisms driving tumor growth and metastasis are complex, and involve the recruitment of many genes working in concert with each other. The tumor is characterized by the expression of specific sets of genes depending on its environment. Here we review the role of the carboxypeptidase E (CPE) gene which has been shown to be important in driving growth, survival and metastasis in many cancer types. CPE was first discovered as a prohormone processing enzyme, enriched in endocrine tumors, and later found to be expressed and secreted from many epithelial-derived tumors and cancer cell lines. Numerous studies have shown that besides wild-type CPE, a N-terminal truncated splice variant form of CPE (CPE-ΔN) has been cloned and found to be highly expressed in malignant tumors and cell lines derived from prostate, breast, liver and lung cancers and gliomas. The mechanisms of action of CPE and the splice variant in promoting tumor growth and metastasis in different cancer types are discussed. Mechanistically, secreted CPE activates the Erk/wnt pathways, while CPE-ΔN interacts with HDACs in a protein complex in the nucleus, to recruit various cell cycle genes and metastatic genes, respectively. Clinical studies suggest that CPE and CPE-ΔN mRNA and protein are potential diagnostic and prognostic biomarkers for multiple cancer types, assayed using solid tumors and secreted serum exosomes. CPE has been shown to be a therapeutic target for multiple cancer types. CPE/CPE-ΔN siRNA transported via exosomes and taken up by recipient high metastatic cancer cells, suppressed growth and proliferation of these cells. Thus future studies, delivering CPE/CPE-ΔN siRNA, perhaps via exosomes, to the tumor could be a novel treatment approach to suppress tumor growth and metastasis.
Collapse
Affiliation(s)
- Sangeetha Hareendran
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Vinay Kumar Sharma
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA.
| |
Collapse
|
3
|
Xu T, Zhang Z, Chen H, Cai R, Yang Q, Liu Q, Fan Y, Liu W, Yao C. Carboxypeptidase N2 as a Novel Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma. Front Oncol 2022; 12:843325. [PMID: 35686102 PMCID: PMC9170673 DOI: 10.3389/fonc.2022.843325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/06/2022] [Indexed: 01/05/2023] Open
Abstract
Carboxypeptidase N2 (CPN2) is a plasma metallo-protease that cleaves basic amino acids from the C-terminal of peptides and proteins. Emerging evidence showed that carboxypeptidases perform many diverse functions in the body and play key roles in tumorigenesis. However, the clinical significance and biological functions of CPN2 in lung adenocarcinoma remain unclear. Our study aimed to explore the potential role and functions of CPN2 in lung adenocarcinoma. The results showed that the transcription level of CPN2 was significantly increased in the tumor tissues of lung adenocarcinoma patients compared to the adjacent normal tissues in The Cancer Genome Atlas cohort (P < 0.05). The survival plots showed that the overall survival of patients with a high expression of CPN2 was significantly lower than that of patients with a low expression of CPN2, both in the Kaplan-Meier database and the clinical sample cohort (P < 0.05). The tissue microarray analysis found that CPN2 protein expression was significantly positively correlated with node status and tumor stage as well as tumor malignancy (P < 0.05). Further univariate and multivariate Cox regression analyses showed that CPN2 may act as an independent prognostic factor in patients with lung adenocarcinoma (P < 0.05). In addition, the analysis of co-expression genes from LinkedOmics showed that CPN2 was positively associated with many genes of fibrillar collagen family members and the PI3K-Akt pathway. The gene set enrichment analysis showed that a higher expression of CPN2 may participate in mTOR, TGF-BETA, NOTCH, TOLL-like-receptor, WNT, and MAPK signaling pathway in lung adenocarcinoma. Notably, the knockdown of CPN2 significantly inhibited the ability of cell proliferation, clone formation, invasion, and migration. Our findings suggested that the upregulation of CPN2 is associated with a worse clinical outcome in lung adenocarcinoma and cancer-related pathways, which laid the foundation for further research on CPN2 during carcinogenesis.
Collapse
Affiliation(s)
- Ting Xu
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongqiang Chen
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qian Yang
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Liu
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yahan Fan
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Yao
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
Exosomal Carboxypeptidase E (CPE) and CPE-shRNA-Loaded Exosomes Regulate Metastatic Phenotype of Tumor Cells. Int J Mol Sci 2022; 23:ijms23063113. [PMID: 35328535 PMCID: PMC8953963 DOI: 10.3390/ijms23063113] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Exosomes promote tumor growth and metastasis through intercellular communication, although the mechanism remains elusive. Carboxypeptidase E (CPE) supports the progression of different cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether CPE is the bioactive cargo within exosomes, and whether it contributes to tumorigenesis, using HCC cell lines as a cancer model. Methods: Exosomes were isolated from supernatant media of cancer cells, or human sera. mRNA and protein expression were analyzed using PCR and Western blot. Low-metastatic HCC97L cells were incubated with exosomes derived from high-metastatic HCC97H cells. In other experiments, HCC97H cells were incubated with CPE-shRNA-loaded exosomes. Cell proliferation and invasion were assessed using MTT, colony formation, and matrigel invasion assays. Results: Exosomes released from cancer cells contain CPE mRNA and protein. CPE mRNA levels are enriched in exosomes secreted from high- versus low-metastastic cells, across various cancer types. In a pilot study, significantly higher CPE copy numbers were found in serum exosomes from cancer patients compared to healthy subjects. HCC97L cells, treated with exosomes derived from HCC97H cells, displayed enhanced proliferation and invasion; however, exosomes from HCC97H cells pre-treated with CPE-shRNA failed to promote proliferation. When HEK293T exosomes loaded with CPE-shRNA were incubated with HCC97H cells, the expression of CPE, Cyclin D1, a cell-cycle regulatory protein and c-myc, a proto-oncogene, were suppressed, resulting in the diminished proliferation of HCC97H cells. Conclusions: We identified CPE as an exosomal bioactive molecule driving the growth and invasion of low-metastatic HCC cells. CPE-shRNA loaded exosomes can inhibit malignant tumor cell proliferation via Cyclin D1 and c-MYC suppression. Thus, CPE is a key player in the exosome transmission of tumorigenesis, and the exosome-based delivery of CPE-shRNA offers a potential treatment for tumor progression. Notably, measuring CPE transcript levels in serum exosomes from cancer patients could have potential liquid biopsy applications.
Collapse
|
5
|
Kuo IY, Liu D, Lai WW, Wang YC, Loh YP. Carboxypeptidase E mRNA: Overexpression predicts recurrence and death in lung adenocarcinoma cancer patients. Cancer Biomark 2021; 33:369-377. [PMID: 34511486 DOI: 10.3233/cbm-210206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Effective biomarkers for prediction of recurrence of lung adenocarcinoma cancer (LADC) patients are needed to determine treatment strategies post-surgery to improve outcome. OBJECTIVE This study evaluates the efficacy of carboxypeptidase E (CPE) mRNA including its splice isoforms, CPE-ΔN, as a biomarker for predicting recurrence in adenocarcinoma patients. METHODS RNA was extracted from resected tumors from 86 patients with different stages of non-small cell LADC. cDNA was synthesized and qRT-PCR carried out to determine the copy numbers of CPE/CPE-ΔN mRNA. Patients were followed for 7 years post-tumor resection to determine recurrence and death. RESULTS ROC curve analysis showed the overall AUC for CPE/CPE-ΔN copy number was 0.563 in predicting recurrence and 0.563 in predicting death. Kaplan-Meier survival analysis showed statistical difference (p= 0.018), indicating that patients with high CPE/CPE-ΔN copy numbers had a shorter time of disease-free survival and also shorter time to death (p= 0.035). Subgroup analyses showed that association of disease-free survival time with CPE/CPE-ΔN copy number was stronger among stage I and II LADC patients (p= 0.047). CONCLUSIONS CPE/CPE-ΔN mRNA is a potentially useful biomarker for predicting recurrence and death in LADC patients, especially in identifying patients at high risk of recurrence at early stages I and II.
Collapse
Affiliation(s)
- I-Ying Kuo
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Danping Liu
- Biostatistics and Bioinformatics Branch, Bethesda, MD, USA.,Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wu-Wei Lai
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Lou H, Loh YP. Silencing of Carboxypeptidase E expression inhibits proliferation and invasion of Panc-1 pancreatic cancer cells. F1000Res 2021; 10:489. [PMID: 35528956 PMCID: PMC9069412 DOI: 10.12688/f1000research.53737.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 10/27/2023] Open
Abstract
Background: Pancreatic cancer is one of the leading cause of cancer-related death globally. The molecular basis of this disease is complex and not fully understood. Previous studies have indicated that carboxypeptidase E (CPE) plays a role in promoting tumorigenesis in many cancer types. Here we have investigated the effect of carboxypeptidase E (CPE), including its isoform, in regulating the proliferation, migration and invasion of Panc-1 cells, a pancreatic cell line. Methods: Panc-1 cells were transfected with CPE siRNA which targets both CPE-wild type and its isoform, or scrambled siRNA, for 24 h and then assayed for proliferation by the MTT and colony formation assays, and migration and invasion by wound healing and matrigel assays, respectively. Results: CPE siRNA treatment of Panc-1 cells down-regulated the expression of CPE mRNA by 94.8%. Silencing of CPE mRNA expression resulted in a significant decrease in proliferation as revealed by the MTT assay and a 62.8% decrease in colony formation. Western blot analysis of expression of Cyclin D1 in Panc-1 cells treated with CPE siRNA showed a decrease of 32.5% compared to scr siRNA treated cells, indicating that CPE regulates proliferation through modulating this cell cycle protein. Additionally, suppression of CPE expression in Panc-1 cells significantly decreased migration and invasion. Conclusions: Our findings indicate that CPE may play an important role in regulating cell proliferation, migration and invasion to promote pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Hong Lou
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Lou H, Loh YP. Silencing of Carboxypeptidase E expression inhibits proliferation and invasion of Panc-1 pancreatic cancer cells. F1000Res 2021; 10:489. [PMID: 35528956 PMCID: PMC9069412 DOI: 10.12688/f1000research.53737.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Pancreatic cancer is one of the leading cause of cancer-related death globally. The molecular basis of this disease is complex and not fully understood. Previous studies have indicated that carboxypeptidase E (CPE) plays a role in promoting tumorigenesis in many cancer types. Here we have investigated the effect of carboxypeptidase E (CPE), including its isoform, in regulating the proliferation, migration and invasion of Panc-1 cells, a pancreatic cell line. Methods: Panc-1 cells were transfected with CPE siRNA which targets both CPE-wild type and its isoform, or scrambled siRNA, for 24 h and then assayed for proliferation by the MTT and colony formation assays, and migration and invasion by wound healing and matrigel assays, respectively. Results: CPE siRNA treatment of Panc-1 cells down-regulated the expression of CPE mRNA by 94.8%. Silencing of CPE mRNA expression resulted in a significant decrease in proliferation as revealed by the MTT assay and a 62.8% decrease in colony formation. Western blot analysis of expression of Cyclin D1 in Panc-1 cells treated with CPE siRNA showed a decrease of 32.5% compared to scr siRNA treated cells, indicating that CPE regulates proliferation through modulating this cell cycle protein. Additionally, suppression of CPE expression in Panc-1 cells significantly decreased migration and invasion. Conclusions: Our findings indicate that CPE may play an important role in regulating cell proliferation, migration and invasion to promote pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Hong Lou
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Bai Z, Feng M, Du Y, Cong L, Cheng Y. Carboxypeptidase E down-regulation regulates transcriptional and epigenetic profiles in pancreatic cancer cell line: A network analysis. Cancer Biomark 2021; 29:79-88. [PMID: 32675394 DOI: 10.3233/cbm-191163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pancreatic cancer is a malignant tumor and its incidence has increased in recent years. Carboxypeptidase E (CPE) is a prohormone/proneuropeptide processing enzyme that has been shown to be associated with tumor growth and invasion in various cancers including pancreatic cancer. OBJECTIVE To understand the molecular mechanism underlying the proliferative effects of CPE in cancer cells. METHODS We down-regulated CPE gene expression in PANC-1 cell, a pancreatic cell line, and investigated mRNA, miRNA, circRNA and lncRNA expression profiling in PANC-1 cells from control group and CPE knock-down group by microarray analysis. We further validated the top 14 differentially expressed circRNAs by qRT-PCR. RESULTS Our results showed that CPE down-regulation caused decreased cell proliferation. The microarray data showed 107, 15, 299 and 360 differentially expressed mRNAs, miRNAs, circRNAs, and lncRNAs, respectively between control group and CPE knock-down group. Of Which, 41 mRNAs, 12 miRNAs, 133 circRNAs, and 262 lncRNAs were down-regulated; 66 mRNAs, 3 miRNAs, 166 circRNAs, and 98 lncRNAs were up-regulated. Bioinformatics analysis showed that the top significantly enriched pathways for the differentially expressed RNAs were related to cancer onset and/or progression, these included p53 signaling pathway, ECM-receptor interaction, focal adhesion and Wnt signaling pathway. We further performed network analysis to assess the mRNA, miRNA, circRNA and lncRNA correlations, and showed that HUWE1, hsa-miR-6780b-5p, has_circ_0058208 and lnc-G3BP1-3:8 were in the core position of the network. CONCLUSIONS Taken together, these results identified potential CPE regulated core genes and pathways for cell proliferation in pancreatic cancer cell, and therefore provide potential targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhile Bai
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
9
|
Hareendran S, Yang X, Lou H, Xiao L, Loh YP. Carboxypeptidase E-∆N Promotes Proliferation and Invasion of Pancreatic Cancer Cells via Upregulation of CXCR2 Gene Expression. Int J Mol Sci 2019; 20:E5725. [PMID: 31731578 PMCID: PMC6888591 DOI: 10.3390/ijms20225725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer-related mortality worldwide. The molecular basis for the pathogenesis of this disease remains elusive. In this study, we have investigated the role of wild-type Carboxypeptidase E (CPE-WT) and a 40 kDa N-terminal truncated isoform, CPE-ΔN in promoting proliferation and invasion of Panc-1 cells, a pancreatic cancer cell line. Both CPE-WT and CPE-ΔN were expressed in Panc-1 and BXPC-3 pancreatic cancer cells. Immunocytochemical studies revealed that in CPE transfected Panc-1 cells, CPE-ΔN was found primarily in the nucleus, whereas CPE-WT was present exclusively in the cytoplasm as puncta, characteristic of secretory vesicles. Endogenous CPE-WT was secreted into the media. Overexpression of CPE-ΔN in Panc-1 cells resulted in enhancement of proliferation and invasion of these cells, as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell proliferation assay and Matrigel invasion assay, respectively. In contrast, the expression of CPE-WT protein at comparable levels to CPE-ΔN in Panc-1 cells resulted in promotion of proliferation but not invasion. Importantly, there was an upregulation of the expression of CXCR2 mRNA and protein in Panc-1 cells overexpressing CPE-ΔN, and these cells exhibited significant increase in proliferation in a CXCR2-dependent manner. Thus, CPE-ΔN may play an important role in promoting pancreatic cancer growth and malignancy through upregulating the expression of the metastasis-related gene, CXCR2.
Collapse
Affiliation(s)
| | | | | | | | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Yang X, Lou H, Chen YT, Huang SF, Loh YP. A novel 40kDa N-terminal truncated carboxypeptidase E splice variant: cloning, cDNA sequence analysis and role in regulation of metastatic genes in human cancers. Genes Cancer 2019; 10:160-170. [PMID: 31798768 PMCID: PMC6872665 DOI: 10.18632/genesandcancer.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Carboxypeptidase E (CPE), a prohormone processing enzyme, is a 476- amino acid protein with a signal peptide in its N-terminus and is expressed in the nervous and the endocrine systems. Recent evidence indicate CPE plays various non-enzymatic roles in the endocrine and nervous systems and in various cancers. Besides wild type (WT) CPE, a 40-kDa CPE protein that localizes in the nucleus and cytoplasm has been described in embryonic mouse brain. In this study we have cloned this CPE variant encoding the 40kDa CPE-ΔN protein from human cancer cells. RACE assay and sequence analysis confirmed existence of this CPE variant mRNA, which has 198 nucleotides removed within the first exon and 589 nucleotides from the 3’-UTR, respectively, compared to WT-CPE mRNA. Bioinformatic analysis revealed that this CPE variant mRNA has a shortened open reading frame, which starts coding from the 3rd ATG relative to WT-CPE mRNA and encodes a 40kDa N-terminus truncated CPE protein. RT-PCR and Western blot analysis showed that 40kDa CPE-ΔN is expressed in multiple cancer cell lines and tumor tissues. Overexpression of this 40kDa CPE-ΔN variant up-regulated expression of multiple metastatic genes encompassing different signaling pathways, suggesting potentially an important role of CPE-ΔN in tumor metastasis.
Collapse
Affiliation(s)
- Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Lou
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhuna, Miaoli, Taiwan
| | - Shui-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhuna, Miaoli, Taiwan.,Department of Anatomical Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Platonov ME, Borovjagin AV, Kaverina N, Xiao T, Kadagidze Z, Lesniak M, Baryshnikova M, Ulasov IV. KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro. Cancer Lett 2017; 417:75-88. [PMID: 29269086 DOI: 10.1016/j.canlet.2017.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
KISS1 tumor suppressor protein regulates cancer cell invasion via MMP9 metalloproteinase. Downregulation of KISS1 gene expression promotes progression of breast cancer and melanoma, resulting in the development of distant metastases. In the current study, we investigated whether restoration of KISS1 expression in KISS1-deficient human metastatic breast cancer cells holds potential as an advanced anticancer strategy. To this end we engineered an infectivity-enhanced conditionally-replicative human adenovirus type 5 encoding KISS1 as an "arming" transgene in the Ad5 E3 region for an ectopic KISS1 expression in transduced cancer cells. The oncolytic potential of the vector was examined using brain-invading metastatic clones of CN34 and MDA-MB-231 breast cancer cells, which supported high levels of AdKISS1 replication, correlating with a robust CRAd-mediated cytotoxicity. Secretion of cellular factors responsible for tumor angiogenesis, cell-to-cell communication and anti-tumoral immune responses upon KISS1 expression in breast cancer cells was analyzed by a RayBiotech Kiloplex Quantibody array. Overall, our results indicate that KISS1 transgene expression provides an important benefit for CRAd-mediated cytotoxicity in breast cancer cells and holds potential as an anticancer treatment in conjunction with oncolytic virotherapy of breast and other metastatic cancers.
Collapse
Affiliation(s)
- Mikhail E Platonov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Anton V Borovjagin
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Natalya Kaverina
- N.N. Blokhin Cancer Research Center, RAMN, Kashirskoe Shosse 23, Moscow, 115478, Russia
| | - Ting Xiao
- Department of Neurological Surgery, Northwestern University, Chicago, 60611, USA
| | - Zaira Kadagidze
- N.N. Blokhin Cancer Research Center, RAMN, Kashirskoe Shosse 23, Moscow, 115478, Russia
| | - Maciej Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, 60611, USA
| | - Marya Baryshnikova
- N.N. Blokhin Cancer Research Center, RAMN, Kashirskoe Shosse 23, Moscow, 115478, Russia
| | - Ilya V Ulasov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Qiu Z, Sun W, Gao S, Zhou H, Tan W, Cao M, Huang W. A 16-gene signature predicting prognosis of patients with oral tongue squamous cell carcinoma. PeerJ 2017; 5:e4062. [PMID: 29158988 PMCID: PMC5695251 DOI: 10.7717/peerj.4062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) is the most common subtype of oral cancer. A predictive gene signature is necessary for prognosis of OTSCC. Methods Five microarray data sets of OTSCC from the Gene Expression Omnibus (GEO) and one data set from The Cancer Genome Atlas (TCGA) were obtained. Differentially expressed genes (DEGs) of GEO data sets were identified by integrated analysis. The DEGs associated with prognosis were screened in the TCGA data set by univariate survival analysis to obtain a gene signature. A risk score was calculated as the summation of weighted expression levels with coefficients by Cox analysis. The signature was used to distinguish carcinoma, estimated by receiver operator characteristic curves and the area under the curve (AUC). All were validated in the GEO and TCGA data sets. Results Integrated analysis of GEO data sets revealed 300 DEGs. A 16-gene signature and a risk score were developed after survival analysis. The risk score was effective to stratify patients into high-risk and low-risk groups in the TCGA data set (P < 0.001). The 16-gene signature was valid to distinguish the carcinoma from normal samples (AUC 0.872, P < 0.001). Discussion We identified a useful 16-gene signature for prognosis of OTSCC patients, which could be applied to clinical practice. Further studies were needed to prove the findings.
Collapse
Affiliation(s)
- Zeting Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Sun
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huaqiang Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Testero SA, Granados C, Fernández D, Gallego P, Covaleda G, Reverter D, Vendrell J, Avilés FX, Pallarès I, Mobashery S. Discovery of Mechanism-Based Inactivators for Human Pancreatic Carboxypeptidase A from a Focused Synthetic Library. ACS Med Chem Lett 2017; 8:1122-1127. [PMID: 29057062 DOI: 10.1021/acsmedchemlett.7b00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022] Open
Abstract
Metallocarboxypeptidases (MCPs) are involved in many biological processes such as fibrinolysis or inflammation, development, Alzheimer's disease, and various types of cancer. We describe the synthesis and kinetic characterization of a focused library of 22 thiirane- and oxirane-based potential mechanism-based inhibitors, which led to discovery of an inhibitor for the human pro-carboxypeptidase A1. Our structural analyses show that the thiirane-based small-molecule inhibitor penetrates the barrier of the pro-domain to bind within the active site. This binding leads to a chemical reaction that covalently modifies the catalytic Glu270. These results highlight the importance of combined structural, biophysical, and biochemical evaluation of inhibitors in design strategies for the development of spectroscopically nonsilent probes as effective beacons for in vitro, in cellulo, and/or in vivo localization in clinical and industrial applications.
Collapse
Affiliation(s)
- Sebastián A. Testero
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carla Granados
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Daniel Fernández
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Pablo Gallego
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Giovanni Covaleda
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - David Reverter
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Josep Vendrell
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Francesc X. Avilés
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Irantzu Pallarès
- Departament
de Bioquímica i Biologia Molecular, Facultat de Biociències,
and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Shahriar Mobashery
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Cao F, Gamble AB, Onagi H, Howes J, Hennessy JE, Gu C, Morgan JAM, Easton CJ. Detection of Biosynthetic Precursors, Discovery of Glycosylated Forms, and Homeostasis of Calcitonin in Human Cancer Cells. Anal Chem 2017; 89:6992-6999. [PMID: 28590120 DOI: 10.1021/acs.analchem.7b00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The peptide hormone calcitonin is intimately connected with human cancer development and proliferation. Its biosynthesis is reasoned to proceed via glycine-, α-hydroxyglycine-, glycyllysine-, and glycyllysyllysine-extended precursors; however, as a result of the limitations of current analytical methods, until now, there has been no procedure capable of detecting these individual species in cell or tissue samples. Therefore, their presence and dynamics in cancer had not been established. Here, we report the first methodology for the separation, detection, and quantification of calcitonin and each of its precursors in human cancer cells. We also report the discovery and characterization of O-glycosylated calcitonin and its analogous biosynthetic precursors. Through direct and simultaneous analysis of the glycosylated and nonglycosylated species, we interrogate the hormone biosynthesis. This shows that the cellular calcitonin level is maintained to mitigate effects of biosynthetic enzyme inhibitors that substantially change the proportions of calcitonin-related species released into the culture medium.
Collapse
Affiliation(s)
- Feihua Cao
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Allan B Gamble
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Joanna Howes
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - James E Hennessy
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Chen Gu
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Jeremy A M Morgan
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Integration of Breast Cancer Secretomes with Clinical Data Elucidates Potential Serum Markers for Disease Detection, Diagnosis, and Prognosis. PLoS One 2016; 11:e0158296. [PMID: 27355404 PMCID: PMC4927101 DOI: 10.1371/journal.pone.0158296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells secrete factors that influence adjacent cell behavior and can lead to enhanced proliferation and metastasis. To better understand the role of these factors in oncogenesis and disease progression, estrogen and progesterone receptor positive MCF-7 cells, triple negative breast cancer MDA-MB-231, DT22, and DT28 cells, and MCF-10A non-transformed mammary epithelial cells were grown in 3D cultures. A special emphasis was placed on triple negative breast cancer since these tumors are highly aggressive and no targeted treatments are currently available. The breast cancer cells secreted factors of variable potency that stimulated proliferation of the relatively quiescent MCF-10A cells. The conditioned medium from each cell line was subjected to mass spectrometry analysis and a variety of secreted proteins were identified including glycolytic enzymes, proteases, protease inhibitors, extracellular matrix proteins, and insulin-like growth factor binding proteins. An investigation of the secretome from each cell line yielded clues about strategies used for breast cancer proliferation and metastasis. Some of the proteins we identified may be useful in the development of a serum-based test for breast cancer detection, diagnosis, prognosis, and monitoring.
Collapse
|