1
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA. Mitochondrial remodeling in colorectal cancer initiation, progression, metastasis, and therapy: A review. Pathol Res Pract 2023; 246:154509. [PMID: 37182313 DOI: 10.1016/j.prp.2023.154509] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is a major health concern with multifactorial pathophysiology representing intense therapeutic challenges. It is well known that deregulation of spatiotemporally-controlled signaling pathways and their metabolic reprogramming effects play a pivotal role in the development and progression of CRC. As such, the mitochondrial role in CRC initiation gained a lot of attention recently, as it is considered the powerhouse that regulates the bioenergetics in CRC. In addition, the crosstalk between microRNAs (miRNAs) and mitochondrial dysfunction has become a newfangled passion for deciphering CRC molecular mechanisms. This review sheds light on the relationship between different signaling pathways involved in metabolic reprogramming and their therapeutic targets, alterations in mitochondrial DNA content, mitochondrial biogenesis, and mitophagy, and the role of polymorphisms in mitochondrial genes as well as miRNAs regulating mitochondrial proteins in CRC initiation, progression, metastasis, and resistance to various therapies.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
2
|
Cheng S, Zhang H, Wang P, Zou K, Duan X, Wang S, Yang Y, Shi L, Wang W. Benchmark dose analysis for PAHs hydroxyl metabolites in urine based on mitochondrial damage of peripheral blood leucocytes in coke oven workers in China. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103675. [PMID: 34033865 DOI: 10.1016/j.etap.2021.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The aim was to explore the dose-response relationship between occupational polycyclic aromatic hydrocarbons (PAHs) exposure and mitochondrial damage in coke oven plants workers. METHODS 544 workers and 238 healthy people were recruited. The ultra-high performance liquid chromatography was used to determine the level of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene. The real-time fluorescence quantitative polymerase chain reaction was used to determine the mitochondrial DNA copy number (mtDNAcn). The benchmark dose software was used to analyze the benchmark dose. RESULTS The mtDNAcn in the exposure group was lower than that in the control group. The concentrations of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene in the exposure group were higher than those in the control group. There is a dose-response relationship between 1-hydroxypyrene, 3-hydroxyphenanthrene and mitochondrial DNA damage. The benchmark dose lower confidence limit (BMDL) of 1-hydroxypyrene were 0.045, 0.004, and 0.058 pg/μg creatinine in the total, male, and female population, respectively. The BMDL of 3-hydroxyphenanthrene were 5.142, 6.099, and 2.807 pg/μg creatinine in the total, male, and female population, respectively. CONCLUSIONS The BMDL of 1-hydroxypyrene and 3-hydroxyphenanthrene initially explored can provide a reference to establish occupational exposure biological limits.
Collapse
Affiliation(s)
- Shuai Cheng
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Henan Provincial Institute of Occupational Health, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuhua Shi
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
3
|
Assao A, Domingues MAC, Minicucci EM, Marchi FA, Coutinho-Camillo CM, Oliveira DT. The relevance of miRNAs as promising biomarkers in lip cancer. Clin Oral Investig 2021; 25:4591-4598. [PMID: 33439343 DOI: 10.1007/s00784-020-03773-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to analyze the expression of miR-181b, miR-21, miR-31, and miR-345 in actinic cheilitis with and without epithelial dysplasia and lower lip squamous cell carcinomas, and to verify if the deregulated expression of these miRNAs would be indicative of malignant transformation. MATERIALS AND METHODS The sample was selected from formalin-fixed paraffin-embedded tissues of 19 actinic cheilitis without epithelial dysplasia, 32 actinic cheilitis with epithelial dysplasia, 42 lower lip squamous cell carcinomas, and 10 nonaltered oral mucosa of the lip. The microRNA (miR, miRNA) expression was quantified by real-time RT-PCR and the expression of the selected miRNAs among the groups of actinic cheilitis and lower lip cancer was compared by chi-square. RESULTS A higher expression of miR-181b, miR-31, and miR-345 was found in actinic cheilitis without epithelial dysplasia in comparison to that in actinic cheilitis with epithelial dysplasia and with lower lip cancer. There were no differences in miR-21 expression between actinic cheilitis and lower lip cancer. Hierarchical clustering analysis showed a tendency for a downregulation of miR-181b, miR-21, miR-31, and miR-345 in most patients with lower lip cancers. CONCLUSIONS The upregulation of miR-181b, miR-31, and miR-345 expression in actinic cheilitis without epithelial dysplasia and the decrease in the expression of these miRNAs in actinic cheilitis with epithelial dysplasia and in lower lip cancer are potential biomarkers of malignant progression. CLINICAL RELEVANCE This miRNA signature can help to identify actinic cheilitis with potential to progress to lip cancer.
Collapse
Affiliation(s)
- Agnes Assao
- Department of Surgery, Stomatology, Pathology and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | | | - Eliana Maria Minicucci
- Department of Histopathology, Botucatu Medical School, Paulista State University, São Paulo, Brazil
| | | | | | - Denise Tostes Oliveira
- Department of Surgery, Stomatology, Pathology and Radiology, Area of Pathology, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| |
Collapse
|
4
|
Khowal S, Wajid S. Role of Smoking-Mediated molecular events in the genesis of oral cancers. Toxicol Mech Methods 2019; 29:665-685. [DOI: 10.1080/15376516.2019.1646372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Palodhi A, Ghosh S, Biswas NK, Basu A, Majumder PP, Maitra A. Profiling of genomic alterations of mitochondrial DNA in gingivobuccal oral squamous cell carcinoma: Implications for disease progress. Mitochondrion 2018; 46:361-369. [PMID: 30261279 DOI: 10.1016/j.mito.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/08/2018] [Accepted: 09/14/2018] [Indexed: 01/31/2023]
Abstract
We have identified 164 somatic mutations in mitochondrial DNA in gingivobuccal oral cancer by deep sequencing the mitochondrial genome from paired tumor and blood DNA samples from 89 patients. We have found evidence of positive selection of somatic nonsynonymous mutations. Non-synonymous mutations in mitochondrial respiratory genes were found to increase the risk of lymph node metastasis (P = 0.0028). We have observed a significant reduction in mitochondrial DNA copy number in tumor DNA of these patients compared to the DNA from adjacent normal tissue samples (P < 1 × 10-6). Analysis of transcriptome data of tumor and adjacent normal tissue revealed patients harboring mutations in mitochondrial protein-coding genes exhibited reduced expression of mitochondrial transcripts.
Collapse
Affiliation(s)
- Arindam Palodhi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India.
| |
Collapse
|
6
|
Manickam AH, Michael MJ, Ramasamy S. Mitochondrial genetics and therapeutic overview of Leber's hereditary optic neuropathy. Indian J Ophthalmol 2017; 65:1087-1092. [PMID: 29133631 PMCID: PMC5700573 DOI: 10.4103/ijo.ijo_358_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a common inherited mitochondrial disorder that is characterized by the degeneration of the optic nerves, leading to vision loss. The major mutations in the mitochondrial genes ND1, ND4, and ND6 of LHON subjects are found to increase the oxidative stress experienced by the optic nerve cell, thereby leading to nerve cell damage. Accurate treatments are not available and drugs that are commercially available like Idebenone, EPI-743, and Bendavia with their antioxidant role help in reducing the oxidative stress experienced by the cell thereby preventing the progression of the disease. Genetic counseling plays an effective role in making the family members aware of the inheritance pattern of the disease. Gene therapy is an alternative for curing the disease but is still under study. This review focuses on the role of mitochondrial genes in causing LHON and therapeutics available for treating the disease. A systematic search has been adopted in various databases using the keywords "LHON," "mitochondria," "ND1," "ND4," "ND6," and "therapy" and the following review on mitochondrial genetics and therapeutics of LHON has been developed with obtained articles from 1988 to 2017.
Collapse
Affiliation(s)
- Agaath Hedina Manickam
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tami Nadu, India
| | - Minu Jenifer Michael
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tami Nadu, India
| | - Sivasamy Ramasamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tami Nadu, India
| |
Collapse
|
7
|
Soon BH, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, Thanabalan J, Mohd Haspani MS, Toh CJ, Mohd Tamil A, Harun R, Wan Ngah WZ, Jamal R. Mitochondrial DNA Mutations in Grade II and III Glioma Cell Lines Are Associated with Significant Mitochondrial Dysfunction and Higher Oxidative Stress. Front Physiol 2017; 8:231. [PMID: 28484394 PMCID: PMC5399085 DOI: 10.3389/fphys.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023] Open
Abstract
The role of mitochondria in tumorigenesis has regained much attention as it could dysregulate cellular energetics, oxidative stress and apoptosis. However, the role of mitochondria in different grade gliomasis still unknown. This study aimed to identify mitochondrial DNA (mtDNA) sequence variations that could possibly affect the mitochondrial functions and also the oxidative stress status. Three different grades of human glioma cell lines and a normal human astrocyte cell line were cultured in-vitro and tested for oxidative stress biomarkers. Relative oxidative stress level, mitochondria activity, and mitochondrial mass were determined by live cell imaging with confocal laser scanning microscope using CM-H2DCFDA, MitoTracker Green, and MitoTracker Orange stains. The entire mitochondrial genome was sequenced using the AffymetrixGeneChip Human Mitochondrial Resequencing Array 2.0. The mitochondrial sequence variations were subjected to phylogenetic haplogroup assessment and pathogenicity of the mutations were predicted using pMUT and PolyPhen2. The Grade II astrocytoma cells showed increased oxidative stress wherea high level of 8-OHdG and oxidative stress indicator were observed. Simultaneously, Grade II and III glioma cells showed relatively poor mitochondria functions and increased number of mutations in the coding region of the mtDNA which could be due to high levels of oxidative stress in these cells. These non-synonymous mtDNA sequence variations were predicted to be pathogenic and could possibly lead to protein dysfunction, leading to oxidative phosphorylation (OXPHOS) impairment, mitochondria dysfunction and could create a vicious cycle of oxidative stress. The Grade IV cells had no missense mutation but preserved intact mitochondria and excellent antioxidant defense mechanisms thus ensuring better survival. In conclusion, Grade II and III glioma cells demonstrated coding region mtDNA mutations, leading to mitochondrial dysfunction and higher oxidative stress.
Collapse
Affiliation(s)
- Bee Hong Soon
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Sue-Mian Then
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,The University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Azizi Abu Bakar
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Farizal Fadzil
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | | | - Charng Jeng Toh
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Azmi Mohd Tamil
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Wan Z Wan Ngah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
8
|
Chattopadhyay E, Roy B. Altered Mitochondrial Signalling and Metabolism in Cancer. Front Oncol 2017; 7:43. [PMID: 28373964 PMCID: PMC5357656 DOI: 10.3389/fonc.2017.00043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria being the central organelle for metabolism and other cell signalling pathways have remained the topic of interest to tumour biologists. In spite of the wide acceptance of Warburg’s hypothesis, role of mitochondrial metabolism in cancer is still unclear. Uncontrolled growth and proliferation, hallmarks of tumour cells, are maintained when the cells adapt to metabolic reprogramming with the help of altered metabolism of mitochondria. This review has focussed on different aspects of mitochondrial metabolism and inter-related signalling pathways which have been found to be modified in cancer.
Collapse
Affiliation(s)
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute , Kolkata , India
| |
Collapse
|