1
|
Wang L, Wang X, Zhang J, Duan J, Tang C, Zhang L, Zeng H, Li H, Li Y, Zhou Y. The role of PDIA3 in oral squamous cell carcinoma and its value as A diagnostic and prognostic biomarker. Heliyon 2023; 9:e22596. [PMID: 38213579 PMCID: PMC10782160 DOI: 10.1016/j.heliyon.2023.e22596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background This study aimed to investigate the role of protein disulfide isomerase A3 (PDIA3) in oral squamous cell carcinoma (OSCC) and evaluate its significance as a diagnostic and prognostic biomarker. Methods Comprehensive bioinformatics analysis of the OSCC dataset from The Cancer Genome Atlas (TCGA) was performed. PDIA3 was depleted in CAL27 and SCC25 OSCC cells by transfection with PDIA3-specific siRNA oligos. The effects of PDIA3 downregulation on cell viability, apoptosis, and cell migration were evaluated using CCK8, ELISA, and wound healing assays, respectively. Results The mRNA and protein expression of PDIA3 was significantly up-regulated in OSCC tissues compared to adjacent normal tissues. Knockdown of PDIA3 led to significantly decreased cell viability, increased apoptosis, and suppressed migratory ability in OSCC cells. The Kaplan-Meier survival curve showed that patients with higher PDIA3 expression levels had shorter survival than those with low PDIA3 levels. The receiver operating characteristic (ROC) curve indicated that PDIA3 had high sensitivity and accuracy for detecting OSCC (area under the curve (AUC): 0.917, CI: 0.879-0.955). Univariate and multivariate Cox regression analyses identified PDIA3 as an independent prognostic factor of OSCC. Furthermore, the depletion of PDIA3 inhibited AKT activity in OSCC cells. Gene set enrichment analysis (GSEA) indicated that PDIA3 is involved in various important biological functions and signaling pathways closely related to cancer development. Conclusion PDIA3 plays an oncogenic role in OSCC and represents a good candidate as a diagnostic and prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Lin Wang
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xinxin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jia Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiafeng Duan
- Department of Implant Dentistry, Xi'an Nobel Dental Hospital, Xi'an, Shaanxi, 710021, China
| | - Chengfang Tang
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Linmei Zhang
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hui Zeng
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hantong Li
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yuefan Li
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Zhou
- College of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
2
|
Alfaro I, Vega M, Romero C, Garrido MP. Mechanisms of Regulation of the Expression of miRNAs and lncRNAs by Metformin in Ovarian Cancer. Pharmaceuticals (Basel) 2023; 16:1515. [PMID: 38004379 PMCID: PMC10674581 DOI: 10.3390/ph16111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecological malignancies. The use of biological compounds such as non-coding RNAs (ncRNAs) is being considered as a therapeutic option to improve or complement current treatments since the deregulation of ncRNAs has been implicated in the pathogenesis and progression of OC. Old drugs with antitumoral properties have also been studied in the context of cancer, although their antitumor mechanisms are not fully clear. For instance, the antidiabetic drug metformin has shown pleiotropic effects in several in vitro models of cancer, including OC. Interestingly, metformin has been reported to regulate ncRNAs, which could explain its diverse effects on tumor cells. In this review, we discuss the mechanism of epigenetic regulation described for metformin, with a focus on the evidence of metformin-dependent microRNA (miRNAs) and long non-coding RNA (lncRNAs) regulation in OC.
Collapse
Affiliation(s)
- Ignacio Alfaro
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
3
|
The proteomic landscape of ovarian cancer cells in response to melatonin. Life Sci 2022; 294:120352. [PMID: 35074409 DOI: 10.1016/j.lfs.2022.120352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with a highly negative prognosis. Melatonin is an indoleamine secreted by the pineal gland during darkness and has shown antitumor activity in both in vitro and in vivo experiments. Herein, we investigated the influence of melatonin on the proteome of human ovarian carcinoma cells (SKOV-3 cell line) using the Ultimate 3000 LC Liquid NanoChromatography equipment coupled to a Q-Exactive mass spectrometry. After 48 h of treatment, melatonin induced a significant cytotoxicity especially with the highest melatonin concentration. The proteomic profile revealed 639 proteins in the control group, and 98, 110, and 128 proteins were altered by melatonin at the doses of 0.8, 1.6, and 2.4 mM, respectively. Proteins associated with the immune system and tricarboxylic acid cycle were increased in the three melatonin-exposed groups of cells. Specifically, the dose of 2.4 mM led to a reduction in molecules associated with protein synthesis, especially those of the ribosomal protein family. We also identified 28 potential genes shared between normal ovarian tissue and OC in all experimental groups, and melatonin was predicted to alter genes encoding ribosomal proteins. Notably, the set of proteins changed by melatonin was linked to a better prognosis for OC patients. We conclude that melatonin significantly alters the proteome of SKOV-3 cells by changing proteins involved with the immune response and mitochondrial metabolism. The concentration of 2.4 mM of melatonin promoted the largest number of protein changes. The evidence suggests that melatonin may be an effective therapeutic strategy against OC.
Collapse
|
4
|
Jia J, Wang Y, Huang R, Du F, Shen X, Yang Q, Li J. Protein disulfide-isomerase A3 knockdown attenuates oxidized low-density lipoprotein-induced oxidative stress, inflammation and endothelial dysfunction in human umbilical vein endothelial cells by downregulating activating transcription factor 2. Bioengineered 2022; 13:1436-1446. [PMID: 34983301 PMCID: PMC8805980 DOI: 10.1080/21655979.2021.2018980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease implicated in oxidative stress and endothelial dysfunction. Protein disulfide-isomerase A3 (PDIA3) has been reported to regulate oxidative stress and suppress inflammation. This study aimed to explore the function of PDIA3 in atherosclerosis and the underlying mechanisms. PDIA3 expression in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) was detected using RT-qPCR and Western blotting. Following PDIA3 knockdown through transfection with small interfering RNA targeting PDIA3, cell viability, oxidative stress and inflammation in ox-LDL-induced HUVECs was examined using a Cell Counting Kit-8, corresponding kits and ELISA, respectively. The levels of CD31, α-smooth muscle, iNOS, p-eNOS, eNOS and NO were assessed using RT-qPCR, Western blotting and an NO kit to reflect endothelial dysfunction in ox-LDL-induced HUVECs. The relationship between PDIA3 and the activating transcription factor 2 (ATF2) was confirmed using co-immunoprecipitation. In addition, ATF2 expression was examined following PDIA3 silencing. The results indicated that PDIA3 was highly expressed in ox-LDL-induced HUVECs. PDIA3 silencing increased cell viability, and reduced oxidative stress and inflammation, as evidenced by the decreased levels of reactive oxygen species, malondialdehyde, TNF-α, IL-1β and IL-6, and increased superoxide dismutase and glutathione peroxidase activity. In addition, PDIA3 deletion improved endothelial dysfunction. PDIA3 interacted with ATF2, and PDIA3 deletion downregulated ATF2 expression. Furthermore, ATF2 overexpression reversed the effects of PDIA3 knockdown on ox-LDL-induced damage of HUVECs. Collectively, PDIA3 knockdown was found to attenuate ox-LDL-induced oxidative stress, inflammation and endothelial dysfunction in HUVECs by downregulating ATF2 expression, showing promise for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Jia
- Department of Anesthetic Surgery, Baotou Steel Hospital, Baotou, China
| | - Yueping Wang
- Department of Cardiology, Baotou Steel Hospital, Baotou, China
| | - Ruijuan Huang
- Laser Treatment Center, Baotou Steel Hospital, Baotou, China
| | - Fengxia Du
- Department of Intensive Medicine, Baotou Steel Hospital, Baotou, China
| | - Xiaozhu Shen
- Department of Geriatrics, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Qiurong Yang
- Nursing Department, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Juan Li
- Nursing Department, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
5
|
Zhang H, Zhou Y, Cheng Q, Dai Z, Wang Z, Liu F, Fan F, Cui B, Cao H. PDIA3 correlates with clinical malignant features and immune signature in human gliomas. Aging (Albany NY) 2021; 12:15392-15413. [PMID: 32687065 PMCID: PMC7467394 DOI: 10.18632/aging.103601] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 01/03/2023]
Abstract
Since therapeutic strategies are limited in gliomas, new molecules or biomarkers are essential for diagnosis and therapy. Here, we investigated expression of protein disulfide isomerase family A member 3 (PDIA3) in gliomas to evaluate its potential as a promising immune target or biomarker. Transcriptome level, genomic profiles and its association with clinical practice from TCGA and CGGA databases were analyzed. All statistical analyses were performed using R project. In gliomas with high PDIA3 expression, somatic mutations showed the correlation with loss of PTEN and amplification of EGFR; meanwhile, in PDIA3 low gliomas, mutations in isocitrate dehydrogenase (IDH) took 80%. Moreover, PDIA3 was found to positively correlate with ESTIMATE scores and diverse infiltrating immune and stromal cell types localizing in tumor microenvironment. PDIA3 was found to be highly correlated with macrophage and T cells based on single cell sequencing. Additionally, PDIA3 was also involved in suppression of anti-tumor immunity via multiple immune regulatory processes. Finally, PDIA3 was observed to correlate with other immune checkpoint inhibitors and associated with inflammation. Our findings identified the significance of PDIA3 in the process of gliomas and demonstrated the potential of PDIA3 as a molecular target in prognosis and immune related treatment of gliomas
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Equal contribution
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Equal contribution
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Biqi Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Diaz Cruz MA, Karlsson S, Szekeres F, Faresjö M, Lund D, Larsson D. Differential expression of protein disulfide-isomerase A3 isoforms, PDIA3 and PDIA3N, in human prostate cancer cell lines representing different stages of prostate cancer. Mol Biol Rep 2021; 48:2429-2436. [PMID: 33761087 PMCID: PMC8060222 DOI: 10.1007/s11033-021-06277-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is a highly heterogeneous and unpredictable progressive disease. Sensitivity of PCa cells to androgens play a central role in tumor aggressiveness but biomarkers with high sensitivity and specificity that follow the progression of the disease has not yet been verified. The vitamin D endocrine system and its receptors, the Vitamin D Receptor (VDR) and the Protein Disulfide-Isomerase A3 (PDIA3), are related to anti-tumoral effects as well as carcinogenesis and have therefore been suggested as potential candidates for the prevention and therapy of several cancer forms, including PCa. In this study, we evaluated the mRNA expression of VDR and PDIA3 involved in vitamin D signaling in cell lines representing different stages of PCa (PNT2, P4E6, LNCaP, DU145 and PC3). This study further aimed to evaluate vitamin D receptors and their isoforms as potential markers for clinical diagnosis of PCa. A novel transcript isoform of PDIA3 (PDIA3N) was identified and found to be expressed in all PCa cell lines analyzed. Androgen-independent cell lines showed a higher mRNA expression ratio between PDIA3N/PDIA3 contrary to androgen-dependent cell lines that showed a lower mRNA expression ratio between PDIA3N/PDIA3. The structure of PDIA3N differed from PDIA3. PDIA3N was found to be a N-truncated isoform of PDIA3 and differences in protein structure suggests an altered protein function i.e. cell location, thioredoxin activity and affinity for 1,25(OH)2D3. Collectively, PDIA3 transcript isoforms, the ratio between PDIA3N/PDIA3 and especially PDIA3N, are proposed as candidate markers for future studies with different stages of PCa progression.
Collapse
Affiliation(s)
- Maria Araceli Diaz Cruz
- Research School of Health and Welfare, School of Health and Welfare, University of Jönköping, Jönköping, Sweden.
| | - Sandra Karlsson
- Department of Natural Science and Biomedicine, School of Health and Welfare, University of Jönköping, Jönköping, Sweden
| | - Ferenc Szekeres
- Department of Biomedicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Maria Faresjö
- Department of Natural Science and Biomedicine, School of Health and Welfare, University of Jönköping, Jönköping, Sweden
| | - Dan Lund
- Department of Natural Science and Biomedicine, School of Health and Welfare, University of Jönköping, Jönköping, Sweden
| | - Dennis Larsson
- Sahlgrenska University Hospital, Gothia Forum - for Clinical Research, Gothenburg, Sweden
| |
Collapse
|
7
|
Tang J, Liu ZY, Tang Y, Wang Y. Effects of Dicer1 targeted by EBV-miR-BART6-5p on biological properties and radiosensitivity of nasopharyngeal carcinoma. Hum Exp Toxicol 2020; 40:977-993. [PMID: 33305599 DOI: 10.1177/0960327120979020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To discuss the effects of Epstein-Barr virus (EBV)-encoded BamHI A rightward transcript (BART) microRNA (miR-BART6-5p) by targeting Dicer1 on biological properties and radiosensitivity of nasopharyngeal carcinoma (NPC). METHODS NPC patients (n = 96) treated with radiotherapy were collected from Jan 2010 to Jan 2011. Real-time quantitative PCR (qRT-PCR) and western blot were carried out to measure the expression of miR-BART6-5p and Dicer1. Dual luciferase reporter gene assay verified that miR-BART6-5p targeted Dicer1. CCK8, wound-healing, Transwell and Annexin-FITC/PI were employed to evaluate the effects of Dicer1 mediated by miR-BART6-5p on biological characteristics of NPC cells. The radiosensitivity of miR-BART6-5p targeting Dicer1 was assessed in vitro and in vivo. RESULTS Increased miR-BART6-5p and decreased Dicer1 were discovered in NPC patients, displaying a close association with T-stage, clinical stage, as well as Pre-DNA of NPC. While elevated Dicer1 and miR-BART6-5p down-regulation in NPC patients were found after effective radiotherapy. Both miR-BART6-5p and Dicer1 were prognostic factors of NPC. Down-regulation of miR-BART6-5p could enhance Dicer1 expression and inhibit NPC cell proliferation, invasion and migration with promoted apoptosis. Clone formation assay also showed miR-BART6-5p down-regulation reduced planting efficiency (PE), which further decreased with the increased dose of irradiation. Injection with miR-BART6-5p inhibitors in nude mice after 6-Gy irradiation contributed to the overexpression of Dicer1 and the inhibition of tumor growth. CONCLUSIONS EBV-miR-BART6-5p may target Dicer1 to facilitate proliferation and metastasis of NPC cells and suppress apoptosis, thus being a new target for NPC therapy.
Collapse
Affiliation(s)
- Jing Tang
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Zhao-Yang Liu
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Yi Tang
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Yan Wang
- Department of Otolaryngology, 549615The People's Hospital of Rizhao, Rizhao, China
| |
Collapse
|
8
|
Peng Z, Chen Y, Cao H, Zou H, Wan X, Zeng W, Liu Y, Hu J, Zhang N, Xia Z, Liu Z, Cheng Q. Protein disulfide isomerases are promising targets for predicting the survival and tumor progression in glioma patients. Aging (Albany NY) 2020; 12:2347-2372. [PMID: 32023222 PMCID: PMC7041756 DOI: 10.18632/aging.102748] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
The present study focused on the expression patterns, prognostic values and potential mechanism of the PDI family in gliomas. Most PDI family members’ mRNA expressions were observed significantly different between gliomas classified by clinical features. Construction of the PDI signature, cluster and risk score models of glioma was done using GSVA, consensus clustering analysis, and LASSO Cox regression analysis respectively. High values of PDI signature/ risk score and cluster 1 in gliomas were associated with malignant clinicopathological characteristics and poor prognosis. Analysis of the distinctive genomic alterations in gliomas revealed that many cases having high PDI signature and risk score were associated with genomic aberrations of driver oncogenes. GSVA analysis showed that PDI family was involved in many signaling pathways in ERAD, apoptosis, and MHC class I among many more. Prognostic nomogram revealed that the risk score was a good prognosis indicator for gliomas. The qRT-PCR and immunohistochemistry confirmed that P4HB, PDIA4 and PDIA5 were overexpressed in gliomas. In summary, this research highlighted the clinical importance of PDI family in tumorigenesis and progression in gliomas.
Collapse
Affiliation(s)
- Zhigang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Yu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, P. R. China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xin Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Wenjing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Yanling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Jiaqing Hu
- Department of Emergency, The Second People's Hospital of Hunan Province, The Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, P. R. China
| | - Nan Zhang
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, P. R. China
| | - Zhiwei Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| |
Collapse
|
9
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2019; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China.
| |
Collapse
|
10
|
Liu Y, Wang JX, Nie ZY, Wen Y, Jia XJ, Zhang LN, Duan HJ, Shi YH. Upregulation of ERp57 promotes clear cell renal cell carcinoma progression by initiating a STAT3/ILF3 feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:439. [PMID: 31747963 PMCID: PMC6864981 DOI: 10.1186/s13046-019-1453-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023]
Abstract
Background ERp57 dysfunction has been shown to contribute to tumorigenesis in multiple malignances. However, the role of ERp57 in clear cell renal carcinoma (ccRCC) remains unclear. Methods Cell proliferation ability was measured by MTT and colony forming assays. Western blotting and quantitative real-time PCR (qRT-PCR) were performed to measure protein and mRNA expression. Co-immunoprecipitation (CoIP) and proximity ligation assay (PLA) were performed to detect protein-protein interaction. Chromatin immunoprecipitation (ChIP), ribonucleoprotein immunoprecipitation (RIP), and oligo pull-down were used to confirm DNA–protein and RNA–protein interactions. Promoter luciferase analysis was used to detect transcription factor activity. Results Here we found ERp57 was overexpressed in ccRCC tissues, and the higher levels of ERp57 were correlated with poor survival in patients with ccRCC. In vivo and in vitro experiments showed that ccRCC cell proliferation was enhanced by ERp57 overexpression and inhibited by ERp57 deletion. Importantly, we found ERp57 positively regulated ILF3 expression in ccRCC cells. Mechanically, ERp57 was shown to bind to STAT3 protein and enhance the STAT3-mediated transcriptional activity of ILF3. Furthermore, ILF3 levels were increased in ccRCC tissues and associated with poor prognosis. Interestingly, we revealed that ILF3 could bind to ERp57 and positively regulate its expression by enhancing its mRNA stability. Furthermore, ccRCC cell proliferation was moderated via the ERp57/STAT3/ILF3 feedback loop. Conclusions In summary, our results indicate that the ERp57/STAT3/ILF3 feedback loop plays a key role in the oncogenesis of ccRCC and provides a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.,Department of Anesthesiology, The 4th Hospital of Hebei Medical University, 169 Tianshan Street , 050000, Shijiazhuang, People's Republic of China
| | - Jian-Xing Wang
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.,Department of Otolaryngology, The Second Hospital of Hebei Medical University, 215 Heping West Road Shijiazhuang, 050000, Shijiazhuang, People's Republic of China
| | - Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping West Road Shijiazhuang, 050000, Shijiazhuang, People's Republic of China
| | - Yue Wen
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Xin-Ju Jia
- Department of Endocrinology, The First Hospital of Hebei Medical University, 89 Donggang Road Shijiazhuang, 050000, Shijiazhuang, People's Republic of China
| | - Li-Na Zhang
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Hui-Jun Duan
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| | - Yong-Hong Shi
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
11
|
Wang X, Chen H, Wen Y, Yang X, Han Q, Jiang P, Huang Z, Cai J, Wang Z. Dicer affects cisplatin‑mediated apoptosis in epithelial ovarian cancer cells. Mol Med Rep 2018; 18:4381-4387. [PMID: 30221734 PMCID: PMC6172369 DOI: 10.3892/mmr.2018.9452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 07/13/2018] [Indexed: 01/26/2023] Open
Abstract
Dicer is an essential enzyme that processes micro (mi)-RNA precursors into mature miRNAs, and serves a critical role in cancer development and progression by regulating gene expression. However, the role of Dicer in cisplatin‑mediated apoptosis and chemotherapy resistance in epithelial ovarian cancer (EOC) cells is poorly understood. In the present study, Dicer was expressed at low levels in cisplatin‑resistant A2780 cells when compared with parental cells. In addition, knocking down Dicer using short hairpin RNA decreased the sensitivity of A2780 and CAOV3 cells to cisplatin. Furthermore, downregulating Dicer significantly inhibited cisplatin‑induced apoptosis in ovarian cancer cells, and decreased the levels of proteins involved in apoptosis signaling pathways, including P73, P63, P53, caspase‑9 and caspase‑3. These findings indicated that Dicer may be a promising target for overcoming drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Xi Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Wen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoxin Yang
- Department of Obstetrics and Gynecology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430022, P.R. China
| | - Qing Han
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ping Jiang
- University Clinic for Medical Radiation Physics, Medical Campus Pius‑Hospital, Carl von Ossietzky University, Oldenburg D‑26121, Germany
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Guo J, Cai J, Zhang Y, Zhu Y, Yang P, Wang Z. Establishment of two ovarian cancer orthotopic xenograft mouse models for in vivo imaging: A comparative study. Int J Oncol 2017; 51:1199-1208. [PMID: 28902355 DOI: 10.3892/ijo.2017.4115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/06/2022] Open
Abstract
Orthotopic tumor animal models are optimal for preclinical research of novel therapeutic interventions. The aim of the present study was to compare two types of ovarian cancer orthotopic xenograft (OCOX) mouse models, i.e. cellular orthotopic injection (COI) and surgical orthotopic implantation (SOI), regarding xenograft formation rate, in vivo imaging, tumor growth and metastasis, and tumor microenvironment. The tumor formation and progression were monitored by bioluminescent in vivo imaging. Cell proliferation and migration abilities were detected by EdU and scratch assays, respectively. Expression of α-SMA, CD34, MMP2, MMP9, vimentin, E-cadherin and Ki67 in tumor samples were detected by immunohistochemistry. As a result, we successfully established COI- and SOI-OCOX mouse models using ovarian cancer cell lines ES2 and SKOV3. The tumor formation rate in the COI and SOI models were 87.5 and 100%, respectively. Suspected tumor cell leakage occurred in 37.5% of the COI models. The SOI xenografts grew faster, held larger primary tumors, and were more metastatic than the COI xenografts. The migration and proliferation properties of the cells that generated SOI xenografts were significantly starker than those deriving COI xenografts in vitro. The tumor cells in SOI xenografts exhibited a mesenchymal phenotype and proliferated more actively than those in the COI xenografts. Additionally, compared with the COI tumors, the SOI tumors contained more cancer associated fibroblasts, matrix metallopeptidase 2 and 9. In conclusion, SOI is a feasible and reliable technique to establish OCOX mouse models mimicking the clinical process of ovarian cancer growth and metastasis, although SOI is more technically difficult and time-consuming than COI.
Collapse
Affiliation(s)
- Jing Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Yunxia Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Yapei Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| |
Collapse
|
13
|
Abstract
The protein disulfide isomerase (PDI) gene family is a protein family classically characterized by endoplasmic reticulum (ER) localization and isomerase and redox activity. ERp57, a prominent multifunctional member of the PDI family, is detected at various levels in multiple cellular localizations outside of the ER. ERp57 has been functionally linked to a host of physiological processes and numerous studies have demonstrated altered expression and aberrant functionality of ERp57 in association with diverse pathological states. Here, we summarize available knowledge of ERp57's functions in subcellular compartments and the roles of dysregulated ERp57 in various diseases toward an emphasis on the potential utility of therapeutic development of ERp57.
Collapse
Affiliation(s)
- Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|