1
|
Meng K, Zhao Z, Gao Y, Wu K, Liu W, Wang X, Zheng Y, Zhao W, Wang B. The synergistic effects of anoikis-related genes and EMT-related genes in the prognostic prediction of Wilms tumor. Front Mol Biosci 2024; 11:1469775. [PMID: 39351154 PMCID: PMC11439783 DOI: 10.3389/fmolb.2024.1469775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Wilms tumor (WT) is the most common type of malignant abdominal tumor in children; it exhibits a high degree of malignancy, grow rapidly, and is prone to metastasis. This study aimed to construct a prognosis model based on anoikis-related genes (ARGs) and epithelial-mesenchymal transition (EMT)-related genes (ERGs) for WT patients; we assessed the characteristics of the tumor microenvironment and treatment efficacy, as well as identifying potential therapeutic targets. To this end, we downloaded transcriptome sequencing data and clinical data for WT and normal renal cortices and used R to construct and validate the prognostic model based on ARGs and ERGs. Additionally, we performed clinical feature analysis, nomogram construction, mutation analysis, drug sensitivity analysis, Connectivity Map (cMAP) analysis, functional enrichment analysis, and immune infiltration analysis. Finally, we screened the hub gene using the STRING database and validated it via experiments. In this way, we constructed a model with good accuracy and robustness, which was composed of seven anoikis- and EMT-related genes. Paclitaxel and mesna were selected as potential chemotherapeutic drugs and adjuvant chemotherapeutic drugs for the WT high-risk group by using the Genomics of Drug Sensitivity in Cancer (GDSC) and cMAP compound libraries, respectively. We proved the existence of a strong correlation between invasive immune cells and prognostic genes and risk scores. Next, we selected NTRK2 as the hub gene, and in vitro experiments confirmed that its inhibition can significantly inhibit the proliferation and migration of tumor cells and promote late apoptosis. In summary, we screened out the potential biomarkers and chemotherapeutic drugs that can improve the prognosis of patients with WT.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Zerui Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yaqing Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Keliang Wu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bei Wang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| |
Collapse
|
2
|
Vural-Ozdeniz M, Calisir K, Acar R, Yavuz A, Ozgur MM, Dalgıc E, Konu O. CAP-RNAseq: an integrated pipeline for functional annotation and prioritization of co-expression clusters. Brief Bioinform 2024; 25:bbad536. [PMID: 38279653 PMCID: PMC10818169 DOI: 10.1093/bib/bbad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/21/2024] [Indexed: 01/28/2024] Open
Abstract
Cluster analysis is one of the most widely used exploratory methods for visualization and grouping of gene expression patterns across multiple samples or treatment groups. Although several existing online tools can annotate clusters with functional terms, there is no all-in-one webserver to effectively prioritize genes/clusters using gene essentiality as well as congruency of mRNA-protein expression. Hence, we developed CAP-RNAseq that makes possible (1) upload and clustering of bulk RNA-seq data followed by identification, annotation and network visualization of all or selected clusters; and (2) prioritization using DepMap gene essentiality and/or dependency scores as well as the degree of correlation between mRNA and protein levels of genes within an expression cluster. In addition, CAP-RNAseq has an integrated primer design tool for the prioritized genes. Herein, we showed using comparisons with the existing tools and multiple case studies that CAP-RNAseq can uniquely aid in the discovery of co-expression clusters enriched with essential genes and prioritization of novel biomarker genes that exhibit high correlations between their mRNA and protein expression levels. CAP-RNAseq is applicable to RNA-seq data from different contexts including cancer and available at http://konulabapps.bilkent.edu.tr:3838/CAPRNAseq/ and the docker image is downloadable from https://hub.docker.com/r/konulab/caprnaseq.
Collapse
Affiliation(s)
| | - Kubra Calisir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Rana Acar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Aysenur Yavuz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Mustafa M Ozgur
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Ertugrul Dalgıc
- Department of Medical Biology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye
| | - Ozlen Konu
- Department of Neuroscience, Bilkent University, Ankara, Türkiye
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| |
Collapse
|
3
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
4
|
Comprehensive Network Analysis Identified SIRT7, NTRK2, and CHI3L1 as New Potential Markers for Intervertebral Disc Degeneration. JOURNAL OF ONCOLOGY 2022; 2022:4407541. [PMID: 35190738 PMCID: PMC8858045 DOI: 10.1155/2022/4407541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Intervertebral disc degeneration (IDD) is considered the basis of serious clinical symptoms, especially for low back pain (LBP). Therefore, it is essential to explore the regulatory role and diagnostic performance of dysregulated genes and potential drugs in IDD. Through WGCNA co-expression analysis, 36 co-expression modules were obtained. Among them, MidnightBlue and Red modules were the most related to IDD. Functional enrichment analysis showed that the Red module was mainly related to neutrophil activation and regulation of cytokine-mediated signaling pathway and apoptosis, whereas the MidnightBlue module was mainly related to extracellular matrix organization, bone development, extracellular matrix, extracellular matrix component, and other extracellular matrices. Furthermore, 356 genes highly related to the module were screened to construct a protein interaction network. Network degree distribution analysis showed that the known IDD-related genes had a higher degree of distribution. Enrichment analysis demonstrated that these genes were enriched in MAPK_SIGNALING_PATHWAY (FDR = 0.012), CHEMOKINE_SIGNALING_PATHWAY, and some other pathways. By constructing a disease-gene interaction network, three disease-specific genes were finally identified. Through combining with the drug-target gene interaction network, two potential therapeutic drugs, entrectinib and larotrectinib, were determined. Finally, based on these genes, the diagnostic model in the training dataset, test dataset, and verification dataset all showed a high diagnostic performance. The findings of this study contributed to the diagnosis of IDD and personalized treatment of IDD.
Collapse
|
5
|
Li J, Xiao L, Yan N, Li Y, Wang Y, Qin X, Zhao D, Liu M, Li N, Lin Y. The Neuroprotective Effect of MicroRNA‐22‐3p Modified Tetrahedral Framework Nucleic Acids on Damaged Retinal Neurons Via TrkB/BDNF Signaling Pathway. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202104141] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Lirong Xiao
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Naihong Yan
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Xin Qin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Ni Li
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- College of Biomedical Engineering Sichuan University Chengdu 610041 China
| |
Collapse
|
6
|
Anjitha R, Antony A, Shilpa O, Anupama KP, Mallikarjunaiah S, Gurushankara HP. Malathion induced cancer-linked gene expression in human lymphocytes. ENVIRONMENTAL RESEARCH 2020; 182:109131. [PMID: 32069766 DOI: 10.1016/j.envres.2020.109131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Malathion is the most widely used organophosphate pesticide in agriculture. Increasing cancer incidence in agricultural workers and their children links to the exposure of malathion. Identification of genes involved in the process of carcinogenesis is essential for exploring the role of malathion. The alteration in gene expression by malathion in human lymphocytes has not been explored yet, although hematological malignancies are rampant in humans. OBJECTIVE This study investigates the malathion induced expression of cancer associated genes in human lymphocytes. METHODS Human lymphocyte viability and colony-forming ability were analyzed in malathion treated and control groups. Gene expression profile in control and malathion treated human lymphocytes were performed using a microarray platform. The genes which have significant functions and those involved in different pathways were analyzed using the DAVID database. Differential gene expression upon malathion exposure was validated by quantitative real-time (qRT)-PCR. RESULTS Malathion caused a concentration-dependent reduction in human lymphocyte viability. At low concentration (50 μg/mL) of malathion treatment, human lymphocytes were viable indicating that low concentration of malathion is not cytotoxic and induces the colony formation. Total of 659 genes (15%) were up regulated and 3729 genes (85%) were down regulated in malathion treated human lymphocytes. About 57 cancer associated genes related to the growth and differentiation of B and T cells, immunoglobulin production, haematopoiesis, tumor suppression, oncogenes and signal transduction pathways like MAPK and RAS were induced by malathion. CONCLUSION This study evidences the carcinogenic nature of malathion. Low concentration of this pesticide is not cytotoxic and induces differentially regulated genes in human lymphocytes, which are involved in the initiation, progression, and pathogenesis of cancer.
Collapse
Affiliation(s)
- Ramakrishnan Anjitha
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Olakkaran Shilpa
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Kizhakke P Anupama
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Shanthala Mallikarjunaiah
- Center for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnanabharathi, Bengaluru, 560 056, Karnataka, India
| | - Hunasanahally P Gurushankara
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
7
|
Pirim D, Dogan B. In silico identification of putative roles of food-derived xeno-mirs on diet-associated cancer. Nutr Cancer 2019; 72:481-488. [DOI: 10.1080/01635581.2019.1670854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilek Pirim
- Department of Molecular Biology and Genetics, Uludag University, Bursa, Turkey
| | - Berkcan Dogan
- Department of Biology and Genetics, Istanbul University Institute of Graduate Studies in Science, Istanbul, Turkey
| |
Collapse
|
8
|
Gan L, Lv L, Liao S. Long non‑coding RNA H19 regulates cell growth and metastasis via the miR‑22‑3p/Snail1 axis in gastric cancer. Int J Oncol 2019; 54:2157-2168. [PMID: 31081061 DOI: 10.3892/ijo.2019.4773] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/20/2019] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is the fifth most prevalent type of malignancy and the third leading cause of cancer‑related mortality worldwide, with the prognosis of patients with late‑stage GC remaining at poor levels. Long non‑coding RNA (lncRNA) H19 (H19) is involved in the growth and metastasis of tumors, and it is upregulated under hypoxic conditions and in certain types of cancer; however, the underlying mechanisms of action of this lncRNA as regards the initiation and development of GC remain unknown. Thus, in the present study, we aimed to determine the role of lncRNA H19 in GC and to elucidate the underlying mechanisms. H19 was found to be upregulated in GC tissues and cells compared with the para‑cancerous tissues, and an elevated expression of H19 was associated with lymph node metastasis and TNM stage. Furthermore, the downregulation of H19 suppressed the proliferation, invasion, migration and epithelial‑mesenchymal transition of GC cells in vitro and suppressed tumor growth in vivo. H19 was also found to be able to bind with miR‑22‑3p, and H19‑induced cell growth and metastasis were shown to be reversed by the upregulation of miR‑22‑3p; the miR‑22‑3p level was found to inversely correlate with H19 expression in GC tissues. Furthermore, the overexpression of miR‑22‑3p notably suppressed the proliferation, migration and invasion of GC cells, and these effects were enhanced by the downregulation of Snail1. In addition, cell growth and metastasis induced by miR‑22‑3p downregulation were partially reversed by the knockdown of Snail1. Furthermore, a negative correlation was observed between the mRNA expression levels of miR‑22‑3p and Snail1 in GC tissues. On the whole, the findings of the present study revealed that H19 was upregulated in GC tissues, which promoted tumor growth and metastasis via the miR‑22‑3p/Snail1 signaling pathway. In summary, these findings provide novel insight into the potential regulatory roles of H19 in GC, and suggest that the H19/miR‑22‑3p/Snail1 axis may prove to be a promising therapeutic target for the treatment of patients with GC.
Collapse
Affiliation(s)
- Li Gan
- Department of Anatomy, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
9
|
Comprehensive analysis of dysregulated lncRNAs, miRNAs and mRNAs with associated ceRNA network in esophageal squamous cell carcinoma. Gene 2019; 696:206-218. [PMID: 30802540 DOI: 10.1016/j.gene.2019.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Mounting evidence suggests that long noncoding RNAs (lncRNAs) play an important role in tumor biology. To date, some lncRNAs have been found to be involved in competitive binding of miRNAs, a major group of competitive endogenous RNAs (ceRNAs), through participation in a regulatory network of protein-coding gene expression. However, the functional roles of lncRNA-mediated ceRNAs in esophageal squamous cell carcinoma (ESCC) have rarely been reported. Here, we construct a hypothetical ceRNA network by analyzing differential expression of lncRNAs, miRNAs and mRNAs obtained from 96 ESCC tissues and 13 normal tissues in the Cancer Genome Atlas. Ultimately, 95 lncRNAs, 9 miRNAs, and 40 mRNAs were identified (fold change >1.5, P < .05) and included in the ceRNA network for ESCC. Moreover, three lncRNAs (IGF2-AS, MUC2 and SOX2-OT) were found to be significantly associated with overall survival (log-rank test, P < .05), and further experiments revealed that lncRNA DLX6-AS1 knockdown inhibited the proliferation and invasion of esophageal cancer cells by enhancing the endogenous function of mTOR. We believe that the identified ceRNA network can facilitate a better understanding of lncRNA-related mechanisms in ESCC.
Collapse
|
10
|
Zhang Y, Liu H, Li W, Yu J, Li J, Shen Z, Ye G, Qi X, Li G. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY) 2018; 9:1585-1594. [PMID: 28657541 PMCID: PMC5509457 DOI: 10.18632/aging.101254] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022]
Abstract
Although CircRNA_100269 is a biomarker used to predict cancer recurrence, its expression and function in gastric cancer (GC) remain unknown. In this study, the expression of circRNA_100269 and its potential downstream miRNA targets were investigated. The molecular function and regulatory mechanism of circRNA_100269 in GC cell lines were also elucidated. The expression levels of circRNA_100269 and its linear isomer LPHN2 mRNA were found to be downregulated (p<0.01) in GC tissues. The target miRNA was predicted to be miR-630, whose expression was upregulated (p<0.01) and found to be negatively correlated with that of circRNA_100269 (r = −0.688) in GC tissues. Moreover, direct interaction of circRNA_100269 and miR-630 was confirmed through dual-luciferase assays. Overexpressing the circRNA_100269 plasmid inhibited cell proliferation (p<0.05). Furthermore, transfection of miR-630 mimics into cell lines overexpressing circRNA_100269 blocked the function of circRNA_100269 (p<0.05). Thus, circRNA_100269 level was downregulated in GC and correlated negatively with that of miR-630. Taken together, our results suggest that circRNA_100269 and miR-630 comprise a novel pathway that regulates proliferation of GC cells.
Collapse
Affiliation(s)
- Yan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Wende Li
- Guangdong Key Laboratory of Laboratory Animal, Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Jin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Gentai Ye
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Xiaolong Qi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| |
Collapse
|