1
|
Wu Y, Wu Y, Xu C, Sun W, You Z, Wang Y, Zhang S. CHMP1A suppresses the growth of renal cell carcinoma cells via regulation of the PI3K/mTOR/p53 signaling pathway. Genes Genomics 2022; 44:823-832. [PMID: 35583792 DOI: 10.1007/s13258-022-01237-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND CHMP1A, a member of the ESCRT-III complex family, has been indicated as a brand-new inhibitor gene of tumors. Our previous research has revealed that CHMP1A plays a vital role in the development and progression of renal cell carcinoma (RCC). OBJECTIVE To investigate the potential target pathway of the regulation of the tumor cell growth by CHMP1A. METHODS The effect of CHMP1A on mTOR pathway was elucidated by western blotting. The effect of CHMP1A on the expression of p53 was evaluated, and A498 cell growth was assessed by colony formation and MTT assays. The expression of p53 was knocked down by shRNA-p53, and the effect of CHMP1A on mTOR after knockdown of p53 was evaluated. The effect of CHMP1A on apoptosis and its relationship with MDM2 pathway were detected by western blotting and FCM. Finally, the relationship between the regulation of p53 by CHMP1A and the PI3K/mTOR pathway was detected. RESULTS This study showed that the mTOR pathway was suppressed significantly in CHMP1A-overexpressing A498 and 786-0 cells; moreover, the enhanced expression of p53 and the reduced proliferation were shown in CHMP1A-overexpressing A498 cells. Furthermore, CHMP1A was able to regulate the PI3K/PTEN/mTOR and MDM2/p53 pathways in order to suppress RCC. In addition, CHMP1A regulated Bax and Bcl-2 via MDM2/p53 to induce the apoptosis of tumor cells and upregulated the expression of p53 via the PI3K/mTOR pathway. CONCLUSIONS The results convey that CHMP1A-related suppression of RCC is closely related to the PI3K/mTOR/p53 pathway.
Collapse
Affiliation(s)
- Youping Wu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yueguo Wu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cong Xu
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Sun
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenqiang You
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China. .,Hangzhou Medical College, No.182 Tianmushan Road, 310013, Hangzhou, China.
| |
Collapse
|
2
|
Zufferey M, Liu Y, Tavernari D, Mina M, Ciriello G. Systematic assessment of gene co-regulation within chromatin domains determines differentially active domains across human cancers. Genome Biol 2021; 22:218. [PMID: 34344431 PMCID: PMC8330107 DOI: 10.1186/s13059-021-02436-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spatial interactions and insulation of chromatin regions are associated with transcriptional regulation. Domains of frequent chromatin contacts are proposed as functional units, favoring and delimiting gene regulatory interactions. However, contrasting evidence supports the association between chromatin domains and transcription. RESULT Here, we assess gene co-regulation in chromatin domains across multiple human cancers, which exhibit great transcriptional heterogeneity. Across all datasets, gene co-regulation is observed only within a small yet significant number of chromatin domains. We design an algorithmic approach to identify differentially active domains (DADo) between two conditions and show that these provide complementary information to differentially expressed genes. Domains comprising co-regulated genes are enriched in the less active B sub-compartments and for genes with similar function. Notably, differential activation of chromatin domains is not associated with major changes of domain boundaries, but rather with changes of sub-compartments and intra-domain contacts. CONCLUSION Overall, gene co-regulation is observed only in a minority of chromatin domains, whose systematic identification will help unravel the relationship between chromatin structure and transcription.
Collapse
Affiliation(s)
- Marie Zufferey
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yuanlong Liu
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Mina
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland.
- Swiss Cancer Center Leman, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
3
|
Tomasich E, Topakian T, Heller G, Udovica S, Krainer M, Marhold M. Loss of HCRP1 leads to upregulation of PD-L1 via STAT3 activation and is of prognostic significance in EGFR-dependent cancer. Transl Res 2021; 230:21-33. [PMID: 33197651 DOI: 10.1016/j.trsl.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Loss of hepatocellular carcinoma-related protein 1 (HCRP1) (alias VPS37A) plays a role in endocytosis of receptor tyrosine kinases as a member of the ESCRT complex and has been linked to poor patient outcome in various types of epithelial cancer. To this date, the molecular and biological mechanisms explaining how its absence would contribute to tumor progression remain unknown. Using genomic editing with CRISPR-Cas9, we generated ovarian and breast cancer cell lines with loss-of-function mutations of HCRP1. We hypothesized that pathways downstream of receptor tyrosine kinases such as epidermal growth factor receptor are affected by HCRP1 loss and looked for deregulated signaling using immunoblotting and classical cancer biology assays. In our study, we show that endogenous deletion of HCRP1 leads to elevated phosphorylation of the transcription factor Signal transducer and activator of transcription 3 (STAT3) and induces upregulation of PD-L1, an important regulator of immune checkpoint inhibition. HCRP1 loss further leads to a mesenchymal phenotype switch in cancer cells, leading to increased proliferation and migration. Concludingly, our data emphasize the role of the tumor microenvironment in tumors with low or absent HCRP1 expression and suggest HCRP1 loss as a potential marker for metastatic potential and immunogenicity of epidermal growth factor receptor-driven cancer.
Collapse
Affiliation(s)
- Erwin Tomasich
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thais Topakian
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | - Simon Udovica
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Michael Krainer
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | - Maximilian Marhold
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kolmus K, Erdenebat P, Szymańska E, Stewig B, Goryca K, Derezińska-Wołek E, Szumera-Ciećkiewicz A, Brewińska-Olchowik M, Piwocka K, Prochorec-Sobieszek M, Mikula M, Miączyńska M. Concurrent depletion of Vps37 proteins evokes ESCRT-I destabilization and profound cellular stress responses. J Cell Sci 2021; 134:134/1/jcs250951. [PMID: 33419951 DOI: 10.1242/jcs.250951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Molecular details of how endocytosis contributes to oncogenesis remain elusive. Our in silico analysis of colorectal cancer (CRC) patients revealed stage-dependent alterations in the expression of 112 endocytosis-related genes. Among them, transcription of the endosomal sorting complex required for transport (ESCRT)-I component VPS37B was decreased in the advanced stages of CRC. Expression of other ESCRT-I core subunits remained unchanged in the investigated dataset. We analyzed an independent cohort of CRC patients, which also showed reduced VPS37A mRNA and protein abundance. Transcriptomic profiling of CRC cells revealed non-redundant functions of Vps37 proteins. Knockdown of VPS37A and VPS37B triggered p21 (CDKN1A)-mediated inhibition of cell proliferation and sterile inflammatory response driven by the nuclear factor (NF)-κB transcription factor and associated with mitogen-activated protein kinase signaling. Co-silencing of VPS37C further potentiated activation of these independently induced processes. The type and magnitude of transcriptional alterations correlated with the differential ESCRT-I stability upon individual and concurrent Vps37 depletion. Our study provides novel insights into cancer cell biology by describing cellular stress responses that are associated with ESCRT-I destabilization.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Purevsuren Erdenebat
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Blair Stewig
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Edyta Derezińska-Wołek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
5
|
Wu Y, Yang Y, Xian YS. HCRP1 inhibits cell proliferation and invasion and promotes chemosensitivity in esophageal squamous cell carcinoma. Chem Biol Interact 2019; 308:357-363. [PMID: 31152734 DOI: 10.1016/j.cbi.2019.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/27/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma related protein 1 (HCRP1), which is essential for internalization and degradation of ubiquitinated membrane receptors, was reported to play crucial roles in cancer pathogenesis and progression. However, the functional roles of HCRP1 in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, we investigated the effects of HCRP1 on ESCC cells and the underlying mechanism. Our results demonstrated that HCRP1 was lowly expressed in ESCC tissues and cell lines. Overexpression of HCRP1 significantly suppressed ESCC cell proliferation and invasion as well as the epithelial-mesenchymal transition (EMT) process. Furthermore, HCRP1 increased the sensitivity of ESCC cells towards cisplatin/fluorouracil. Mechanistically, HCRP1 inhibited the activity of Wnt/β-catenin signaling pathway in ESCC cells. In conclusion, these findings indicated that HCRP1 suppressed ESCC cell proliferation and invasion through regulation of the Wnt/β-catenin pathway. Therefore, HCRP1 may function as a tumor suppressor in ESCC progression.
Collapse
Affiliation(s)
- Yu Wu
- Department of Thoracic Surgery, Shaanxi People's Hospital, Xi'an, 710068, China
| | - Ye Yang
- Department of Thoracic Surgery, Shaanxi People's Hospital, Xi'an, 710068, China
| | - Yin-Sheng Xian
- Department of Oncosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Fu F, Wan X, Wang D, Kong Z, Zhang Y, Huang W, Wang C, Wu H, Li Y. MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression. Oncotarget 2017; 9:1931-1943. [PMID: 29416742 PMCID: PMC5788610 DOI: 10.18632/oncotarget.23026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related deaths among males worldwide. However, the molecular mechanisms underlying the progression of PCa remain unclear. Despite several reported miRNAs in prostate cancer, these reports lacked system-level identification of differentially expressed miRNAs in large sample size. Moreover, it's still largely unknown how miRNAs result in tumorigenesis and progression of PCa. Therefore, by analyzing three public databases, we identified 16 upregulated miRNAs and 13 downregulated miRNAs, and validated miR-19a was one of the most upregulated miRNAs using qRT-PCR. The dual-luciferase reporter assays indicated VPS37A was a potential target of miR-19a. Functional assays revealed miR-19a served as an oncogene by inhibiting VPS37A. Notably, a significant inverse correlation of miR-19a and VPS37A expression was observed in PCa specimens. Moreover, miR-19a-high and VPS37A-low phenotypes were associated with poor prognosis with biochemical recurrence-free probability. In this study, we confirmed the oncogenic role of miR-19a via targeting VPS37A in PCa, identifying miR-19a and VPS37A as diagnosis and therapeutic biomarkers for PCa.
Collapse
Affiliation(s)
- Fangqiu Fu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Xuechao Wan
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Dan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Zhe Kong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Yalong Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Wenhua Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Chenji Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Hai Wu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Yao Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
7
|
HCRP1 downregulation confers poor prognosis and induces chemoresistance through regulation of EGFR-AKT pathway in human gastric cancer. Virchows Arch 2017; 471:743-751. [PMID: 28963677 DOI: 10.1007/s00428-017-2237-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
The current study aims to investigate the biological roles and clinical significance of HCRP1 in human gastric cancer. The expression pattern of HCRP1 in gastric cancer tissue and adjacent non-cancerous tissue was detected by immunohistochemistry. HCRP1 downregulation was found in 57 of 137 human gastric cancer samples and correlated with advanced TNM stage, positive nodal status, and relapse. Log-rank test showed that HCRP1 downregulation also correlated with poor overall survival and reduced relapse-free survival. In addition, we found that HCRP1 overexpression inhibited proliferation, colony formation, and invasion in HGC-27 cells. On the other hand, HCRP1 depletion by small interfering RNA promoted proliferation, colony formation, and invasion in SGC-7901 cells. We also treated gastric cancer cells with cisplatin. MTT and Annexin V/PI analysis were carried out to examine change of chemoresistance. We found that HCRP1 overexpression sensitized HGC-27 cells to cisplatin while its depletion reduced sensitivity in SGC-7901 cells. Moreover, we found that HCRP1 overexpression negatively regulated cyclin D1, MMP-2, p-EGFR, p-ERK, and p-AKT. HCRP1 depletion showed the opposite effects. In conclusion, our results suggest that HCRP1 downregulation might serve as an indicator for poor prognosis in gastric cancer patients. HCRP1 reduces drug resistance through regulation of EGFR-AKT signaling.
Collapse
|
8
|
Sun L, Lü J, Ding S, Bi D, Ding K, Niu Z, Liu P. HCRP1 regulates proliferation, invasion, and drug resistance via EGFR signaling in prostate cancer. Biomed Pharmacother 2017; 91:202-207. [DOI: 10.1016/j.biopha.2017.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 01/28/2023] Open
|
9
|
Yang W, Wang JG, Xu J, Zhou D, Ren K, Hou C, Chen L, Liu X. HCRP1 inhibits TGF-β induced epithelial-mesenchymal transition in hepatocellular carcinoma. Int J Oncol 2017; 50:1233-1240. [DOI: 10.3892/ijo.2017.3903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/07/2017] [Indexed: 11/06/2022] Open
|