1
|
Gao M, Ma H, Liu X, Zhang Y, Tang L, Zheng Z, Zhang X, Jiang C, Lin L, Sun H. Synthesis and Biological Evaluation of Substituted Pyrazole-Fused Oleanolic Acid Derivatives as Novel Selective α-Glucosidase Inhibitors. Chem Biodivers 2023; 20:e202201178. [PMID: 36573561 DOI: 10.1002/cbdv.202201178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/28/2022]
Abstract
A series of novel substituted pyrazole-fused oleanolic acid derivative were synthesized and evaluated as selective α-glucosidase inhibitors. Among these analogs, compounds 4a-4f exhibited more potent inhibitory activities compared with their methyl ester derivatives, and standard drugs acarbose and miglitol as well. Besides, all these analogs exhibited good selectivity towards α-glucosidase over α-amylase. Analog 4d showed potent inhibitory activity against α-glucosidase (IC50 =2.64±0.13 μM), and greater selectivity towards α-glucosidase than α-amylase by ∼33-fold. Inhibition kinetics showed that compound 4d was a non-competitive α-glucosidase inhibitor, which was consistent with the result of its simulation molecular docking. Moreover, the in vitro cytotoxicity of compounds 4a-4f towards hepatic LO2 and HepG2 cells was tested.
Collapse
Affiliation(s)
- Mei Gao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.,Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Hui Ma
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Xiaoyu Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Yanhua Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Liansheng Tang
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Zhiyong Zheng
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Xinlei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin Lin
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Haiji Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
2
|
Wang KM, Ge YX, Zhang J, Chen YT, Zhang NY, Gu JS, Fang L, Zhang XL, Zhang J, Jiang CS. New cycloalkyl[b]thiophenylnicotinamide-based α-glucosidase inhibitors as promising anti-diabetic agents: Synthesis, in silico study, in vitro and in vivo evaluations. Bioorg Med Chem Lett 2023; 79:129069. [PMID: 36395995 DOI: 10.1016/j.bmcl.2022.129069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
In the present study, a series of cycloalkyl[b]thiophenylnicotinamide derivatives against α-glucosidase were synthesized, and evaluated for their in vitro and in vivo anti-diabetic potential. Most of the synthetic analogues exhibited superior α-glucosidase inhibitory effects than the standard drug acarbose (IC50 = 258.5 μM), in which compound 11b with cyclohexyl[b]thiophene core demonstrated the highest activity with an IC50 value of 9.9 μM and showed higher selectivity towards α-glucosidase over α-amylase by 7.4-fold. Fluorescence quenching experiment confirmed the direct binding of 11b with α-glucosidase, kinetics study revealed that 11b was a mixed-type inhibitor, and its binding mode was analyzed using molecular docking. Moreover, analogs compounds 6a-9b, 11b, 12b did not show in vitro cytotoxicity against LO2 and HepG2 cells. Finally, compound 11b exhibited in vivo hypoglycemic activity by reducing the blood glucose levels in sucrose-loaded rats.
Collapse
Affiliation(s)
- Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Zhang
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd., Shouguang 262725, China
| | - Yi-Tong Chen
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-Song Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xin-Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Xie HX, Zhang J, Li Y, Zhang JH, Liu SK, Zhang J, Zheng H, Hao GZ, Zhu KK, Jiang CS. Novel tetrahydrobenzo[b]thiophen-2-yl)urea derivatives as novel α-glucosidase inhibitors: Synthesis, kinetics study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg Chem 2021; 115:105236. [PMID: 34411978 DOI: 10.1016/j.bioorg.2021.105236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
α-Glucosidase inhibitors, which can inhibit the digestion of carbohydrates into glucose, are one of important groups of anti-type 2 diabetic drugs. In the present study, we report our effort on the discovery and optimization of α-glucosidase inhibitors with tetrahydrobenzo[b]thiophen-2-yl)urea core. Screening of an in-house library revealed a moderated α-glucosidase inhibitors, 5a, and then the following structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased inhibitory activity against α-glucosidase than the parental compound 5a (IC50 of 26.71 ± 1.80 μM) and the positive control acarbose (IC50 of 258.53 ± 1.27 μM). Among them, compounds 8r (IC50 = 0.59 ± 0.02 μM) and 8s (IC50 = 0.65 ± 0.03 μM) were the most potent inhibitors, and showed selectivity over α-amylase. The direct binding of both compounds with α-glucosidase was confirmed by fluorescence quenching experiments. Kinetics study revealed that these compounds were non-competitive inhibitors, which was consistent with the molecular docking results that compounds 8r and 8s showed high preference to bind to the allosteric site instead of the active site of α-glucosidase. In addition, compounds 8r and 8s were not toxic (IC50 > 100 μM) towards LO2 and HepG2 cells. Finally, the in vivo anti-hyperglycaemic activity assay results indicated that compounds 8r could significantly decrease the level of plasma glucose and improve glucose tolerance in SD rats treated with sucrose. The present study provided the tetrahydrobenzo[b]thiophen-2-yl)urea chemotype for developing novel α-glucosidase inhibitors against type 2 diabetes.
Collapse
Affiliation(s)
- Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jie Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China
| | - Hua Zheng
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China
| | - Gui-Zhou Hao
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China.
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
4
|
Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331:113382. [DOI: 10.1016/j.expneurol.2020.113382] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
5
|
Dogruel H, Balci MK. Development of therapeutic options on type 2 diabetes in years: Glucagon-like peptide-1 receptor agonist’s role intreatment; from the past to future. World J Diabetes 2019; 10:446-453. [PMID: 31523380 PMCID: PMC6715574 DOI: 10.4239/wjd.v10.i8.446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/13/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hypergly-cemia. Type 2 diabetes (T2DM) accounting for 90% of cases globally. The worldwide prevalence of DM is rising dramatically over the last decades, from 30 million cases in 1985 to 382 million cases in 2013. It’s estimated that 451 million people had diabetes in 2017. As the pathophysiology was understood over the years, treatment options for diabetes increased. Incretin-based therapy is one of them. Glucagon-like peptide-1 receptor agonist (GLP-1 RA) not only significantly lower glucose level with minimal risk of hypoglycemia but also, they have an important advantage in themanagement of cardiovascular risk and obesity. Thus, we will review here GLP-1 RAsrole in the treatment of diabetes.
Collapse
Affiliation(s)
- Hakan Dogruel
- Department of Internal Medicine, Antalya Ataturk State Hospital, Antalya 07040, Turkey
| | - Mustafa Kemal Balci
- Akdeniz University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Antalya 07070, Turkey
| |
Collapse
|