1
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
High mobility group box 1 is involved in the pathogenesis of passive transfer myasthenia gravis model. Neuroreport 2021; 32:803-807. [PMID: 33994526 DOI: 10.1097/wnr.0000000000001665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease with autoantibodies against the mainly nicotinic acetylcholine receptor (AChR). High mobility group box1 (HMGB1) acts as a danger signal and drives the pathogenesis of autoimmune-mediated diseases. However, the role of HMGB1 in the pathogenesis of MG is not fully understood. Therefore, in this study, we analyzed serum levels of HMGB1 and immunohistochemical HMGB1 staining of muscle tissues in the passive transfer MG model to investigate the role of HMGB1 in MG. As a result, serum HMGB1 levels tended to be higher and the quantitative score of muscle pathology showed greater HMGB1 deposition (P = 0.02) along with sparser AChR staining and more severe inflammation in the passive transfer MG rats (n = 6) than those in control rats (n = 6). These findings indicate that HMGB1 is an important mediator and biomarker for inflammation in the pathogenesis of MG and can be a therapeutic target in MG.
Collapse
|
3
|
Uzawa A, Kuwabara S, Suzuki S, Imai T, Murai H, Ozawa Y, Yasuda M, Nagane Y, Utsugisawa K. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol 2020; 203:366-374. [PMID: 33184844 DOI: 10.1111/cei.13546] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by muscle weakness and fatigue caused by the presence of autoantibodies against the acetylcholine receptor (AChR) or the muscle-specific tyrosine kinase (MuSK). Activated T, B and plasma cells, as well as cytokines, play important roles in the production of pathogenic autoantibodies and the induction of inflammation at the neuromuscular junction in MG. Many studies have focused on the role of cytokines and lymphocytes in anti-AChR antibody-positive MG. Chronic inflammation mediated by T helper type 17 (Th17) cells, the promotion of autoantibody production from B cells and plasma cells by follicular Th (Tfh) cells and the activation of the immune response by dysfunction of regulatory T (Treg ) cells may contribute to the exacerbation of the MG pathogenesis. In fact, an increased number of Th17 cells and Tfh cells and dysfunction of Treg cells have been reported in patients with anti-AChR antibody-positive MG; moreover, the number of these cells was correlated with clinical parameters in patients with MG. Regarding cytokines, interleukin (IL)-17; a Th17-related cytokine, IL-21 (a Tfh-related cytokine), the B-cell-activating factor (BAFF; a B cell-related cytokine) and a proliferation-inducing ligand (APRIL; a B cell-related cytokine) have been reported to be up-regulated and associated with clinical parameters of MG. This review focuses on the current understanding of the involvement of cytokines and lymphocytes in the immunological pathogenesis of MG, which may lead to the development of novel therapies for this disease in the near future.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - T Imai
- Department of Neurology, Sapporo Medical University Hospital, Sapporo, Japan
| | - H Murai
- Department of Neurology, International University of Health and Welfare, Narita, Japan
| | - Y Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Nagane
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| | - K Utsugisawa
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| |
Collapse
|
4
|
Jiao W, Hu F, Li J, Song J, Liang J, Li L, Song Y, Chen Z, Li Q, Ke L. Qiangji Jianli Decoction promotes mitochondrial biogenesis in skeletal muscle of myasthenia gravis rats via AMPK/PGC-1α signaling pathway. Biomed Pharmacother 2020; 129:110482. [PMID: 32768964 DOI: 10.1016/j.biopha.2020.110482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
The Qiangji Jianli Decoction (QJJLD) is an effective Chinese medicine formula for treating Myasthenia gravis (MG) in the clinic. QJJLD has been proven to regulate mitochondrial fusion and fission of skeletal muscle in myasthenia gravis. In this study, we investigated whether QJJLD plays a therapeutic role in regulating mitochondrial biogenesis in MG and explored the underlying mechanism. Rats were experimentally induced to establish autoimmune myasthenia gravis (EAMG) by subcutaneous immunization with R97-116 peptides. The treatment groups were administered three different dosages of QJJLD respectively. After the intervention of QJJLD, the pathological changes of gastrocnemius muscle in MG rats were significantly improved; SOD, GSH-Px, Na+-K+ ATPase and Ca2+-Mg2+ ATPase activities were increased; and MDA content was decreased in the gastrocnemius muscle. Moreover, AMPK, p38MAPK, PGC-1α, NRF-1, Tfam and COX IV mRNA and protein expression levels were also reversed by QJJLD. These results implied that QJJLD may provide a potential therapeutic strategy through promoting mitochondrial biogenesis to alleviate MG via activating the AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Fangyu Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jinqiu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Lanqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Zhiwei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
5
|
Takata K, Kinoshita M, Mochizuki H, Okuno T. Antigen specific B cells in myasthenia gravis patients. Immunol Med 2020; 43:65-71. [DOI: 10.1080/25785826.2020.1724756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kazushiro Takata
- Department of Neurology, Japan Community Health care Organization (JCHO) Hoshigaoka medical center, Hirakata, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka university Graduate school of Medicine, Suita, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka university Graduate school of Medicine, Suita, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka university Graduate school of Medicine, Suita, Japan
| |
Collapse
|