1
|
Ricken F, Can AD, Gräber S, Häusler M, Jahnen-Dechent W. Post-translational modifications glycosylation and phosphorylation of the major hepatic plasma protein fetuin-A are associated with CNS inflammation in children. PLoS One 2022; 17:e0268592. [PMID: 36206263 PMCID: PMC9544022 DOI: 10.1371/journal.pone.0268592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Fetuin-A is a liver derived plasma protein showing highest serum concentrations in utero, preterm infants, and neonates. Fetuin-A is also present in cerebrospinal fluid (CSF). The origin of CSF fetuin-A, blood-derived via the blood-CSF barrier or synthesized intrathecally, is presently unclear. Fetuin-A prevents ectopic calcification by stabilizing calcium and phosphate as colloidal calciprotein particles mediating their transport and clearance. Thus, fetuin-A plays a suppressive role in inflammation. Fetuin-A is a negative acute-phase protein under investigation as a biomarker for multiple sclerosis (MS). Here we studied the association of pediatric inflammatory CNS diseases with fetuin-A glycosylation and phosphorylation. Paired blood and CSF samples from 66 children were included in the study. Concentration measurements were performed using a commercial human fetuin-A/AHSG ELISA. Of 60 pairs, 23 pairs were analyzed by SDS-PAGE following glycosidase digestion with PNGase-F and Sialidase-AU. Phosphorylation was analyzed in 43 pairs by Phos-TagTM acrylamide electrophoresis following alkaline phosphatase digestion. Mean serum and CSF fetuin-A levels were 0.30 ± 0.06 mg/ml and 0.644 ± 0.55 μg/ml, respectively. This study showed that serum fetuin-A levels decreased in inflammation corroborating its role as a negative acute-phase protein. Blood-CSF barrier disruption was associated with elevated fetuin-A in CSF. A strong positive correlation was found between the CSF fetuin-A/serum fetuin-A quotient and the CSF albumin/serum albumin quotient, suggesting predominantly transport across the blood-CSF barrier rather than intrathecal fetuin-A synthesis. Sialidase digestion showed increased asialofetuin-A levels in serum and CSF samples from children with neuroinflammatory diseases. Desialylation enhanced hepatic fetuin-A clearance via the asialoglycoprotein receptor thus rapidly reducing serum levels during inflammation. Phosphorylation of fetuin-A was more abundant in serum samples than in CSF, suggesting that phosphorylation may regulate fetuin-A influx into the CNS. These results may help establish Fetuin-A as a potential biomarker for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Frederik Ricken
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
| | - Ahu Damla Can
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
| | - Steffen Gräber
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
- * E-mail:
| |
Collapse
|
2
|
Dynamics of Inflammatory and Neurodegenerative Biomarkers after Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231810946. [PMID: 36142860 PMCID: PMC9503241 DOI: 10.3390/ijms231810946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly efficient treatment of multiple sclerosis (MS), and hence it likely normalizes pathological and/or enhances beneficial processes in MS. The disease pathomechanisms include neuroinflammation, glial cell activation and neuronal damage. We studied biomarkers that in part reflect these, like markers for neuroinflammation (C-X-C motif chemokine ligand (CXCL) 9, CXCL10, CXCL13, and chitinase 3-like 1 (CHI3L1)), glial perturbations (glial fibrillary acidic protein (GFAP) and in part CHI3L1), and neurodegeneration (neurofilament light chain (NfL)) by enzyme-linked immunosorbent assays (ELISA) and single-molecule array assay (SIMOA) in the serum and cerebrospinal fluid (CSF) of 32 MS patients that underwent aHSCT. We sampled before and at 1, 3, 6, 12, 24 and 36 months after aHSCT for serum, as well as before and 24 months after aHSCT for CSF. We found a strong increase of serum CXCL10, NfL and GFAP one month after the transplantation, which normalized one and two years post-aHSCT. CXCL10 was particularly increased in patients that experienced reactivation of cytomegalovirus (CMV) infection, but not those with Epstein-Barr virus (EBV) reactivation. Furthermore, patients with CMV reactivation showed increased Th1 phenotype in effector memory CD4+ T cells. Changes of the other serum markers were more subtle with a trend for an increase in serum CXCL9 early post-aHSCT. In CSF, GFAP levels were increased 24 months after aHSCT, which may indicate sustained astroglia activation 24 months post-aHSCT. Other CSF markers remained largely stable. We conclude that MS-related biomarkers indicate neurotoxicity early after aHSCT that normalizes after one year while astrocyte activation appears increased beyond that, and increased serum CXCL10 likely does not reflect inflammation within the central nervous system (CNS) but rather occurs in the context of CMV reactivation or other infections post-aHSCT.
Collapse
|
3
|
A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:jpm12091430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
|
4
|
Correale J, Halfon MJ, Jack D, Rubstein A, Villa A. Acting centrally or peripherally: A renewed interest in the central nervous system penetration of disease-modifying drugs in multiple sclerosis. Mult Scler Relat Disord 2021; 56:103264. [PMID: 34547609 DOI: 10.1016/j.msard.2021.103264] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
With the recent approval of cladribine tablets, siponimod and ozanimod, there has been a renewed interest into the extent to which these current generation disease-modifying therapies (DMTs) are able to cross into the central nervous system (CNS), and how this penetration of the blood-brain barrier (BBB) may influence their ability to treat multiple sclerosis (MS). The integrity of the CNS is maintained by the BBB, blood-cerebrospinal fluid barrier, and the arachnoid barrier, which all play an important role in preserving the immunological environment and homeostasis within the CNS. The integrity of the BBB decreases during the course of MS, with a putative temporal relationship to disease worsening. Furthermore, it is currently considered that progression of the disease is mediated mainly by resident cells of the CNS. The existing literature provides evidence to show that some of the current generation DMTs for MS are able to penetrate the CNS and potentially exert direct effects on CNS-resident cells, in particular the CNS-penetrating prodrugs cladribine and fingolimod, and other sphingosine-1 phosphate receptor modulators; siponimod and ozanimod. Other current generation DMTs appear to be restricted to the periphery due to their high molecular weight or physicochemical properties. As more effective brain penetrant therapies are developed for the treatment of MS, there is a need to understand whether the potential for direct effects within the CNS are of significance, and whether this brings additional benefits over and above treatment effects mediated in the periphery. In turn, this will require an improved understanding of the structure and function of the BBB, the role it plays in MS and subsequent treatments. This narrative review summarizes the data supporting the biological plausibility of a potential benefit from therapeutic molecules entering the CNS, and discusses the potential significance in the current and future treatment of MS.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Fleni, Buenos Aires, Argentina.
| | | | - Dominic Jack
- Merck Serono Ltd, Feltham, United Kingdom (an affiliate of Merck KGaA)
| | - Adrián Rubstein
- Merck S.A., Buenos Aires, Argentina (an affiliate of Merck KGaA)
| | - Andrés Villa
- Hospital Ramos Mejía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
5
|
Meeting report: "Human endogenous retroviruses: HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer", Lyon, France, november 5th and 6th 2019 - an MS scientist's digest. Mult Scler Relat Disord 2020; 42:102068. [PMID: 32302965 DOI: 10.1016/j.msard.2020.102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022]
Abstract
The Third International Workshop on Human Endogenous Retroviruses and disease (www.hervanddisease.com), addressing HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer, in Lyon, France on November 5-6th 2019, once again gathered an international group of basic and clinical scientists investigating the involvement of human endogenous retroviruses (HERVs) in human diseases.
Collapse
|
6
|
Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019; 203:107394. [PMID: 31356910 DOI: 10.1016/j.pharmthera.2019.107394] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly increased by various inflammatory and immunological conditions, including rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, and several cancers. However, its physiological and pathophysiological roles in the development of cancer and neurodegenerative and inflammatory diseases remain unclear. Several studies have reported that CHI3L1 promotes cancer proliferation, inflammatory cytokine production, and microglial activation, and that multiple receptors, such as advanced glycation end product, syndecan-1/αVβ3, and IL-13Rα2, are involved. In addition, the pro-inflammatory action of CHI3L1 may be mediated via the protein kinase B and phosphoinositide-3 signaling pathways and responses to various pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 could contribute to a vast array of inflammatory diseases. In this article, we review recent findings regarding the roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of cancers, neurodegenerative diseases, and inflammatory diseases.
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
7
|
Krasitskaya VV, Chaukina VV, Abroskina MV, Vorobyeva MA, Ilminskaya AA, Kabilov MR, Prokopenko SV, Nevinsky GA, Venyaminova AG, Frank LA. Bioluminescent aptamer-based sandwich-type assay of anti-myelin basic protein autoantibodies associated with multiple sclerosis. Anal Chim Acta 2019; 1064:112-118. [PMID: 30982509 DOI: 10.1016/j.aca.2019.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Bioluminescent solid-phase sandwich-type microassay was developed to detect multiple sclerosis (MS)-associated autoantibodies in human sera. The assay is based on two different 2'-F-Py RNA aptamers against the target autoantibodies as biospecific elements, and Ca2+-regulated photoprotein obelin as a reporter. The paper describes elaboration of the assay and its application to 91 serum samples from patients with clinically definite MS and 86 ones from individuals healthy in terms of MS. Based on the receiver-operator curve (ROC) analysis, the chosen threshold value as clinical decision limit offers sensitivity of 63.7% and specificity of 94.2%. The area under the ROC curve (AUC) value of 0.87 shows a good difference between the groups under investigation. The likelihood ratio of 10.97 proves the diagnostic value of the assay and its potential as one of the laboratory MS-tests.
Collapse
Affiliation(s)
- Vasilisa V Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia.
| | - Valentina V Chaukina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Maria V Abroskina
- State Medical University named after V.F. Voino-Yasenetsky, Krasnoyarsk, 660022, Russia
| | - Maria A Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | | | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Semyon V Prokopenko
- State Medical University named after V.F. Voino-Yasenetsky, Krasnoyarsk, 660022, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Ludmila A Frank
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| |
Collapse
|
8
|
Trend S, Jones AP, Cha L, Byrne SN, Geldenhuys S, Fabis-Pedrini MJ, Carroll WM, Cole JM, Booth DR, Lucas RM, Kermode AG, French MA, Hart PH. Higher Serum Immunoglobulin G3 Levels May Predict the Development of Multiple Sclerosis in Individuals With Clinically Isolated Syndrome. Front Immunol 2018; 9:1590. [PMID: 30057580 PMCID: PMC6053531 DOI: 10.3389/fimmu.2018.01590] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Clinically isolated syndrome (CIS) is a first episode of neurological symptoms that may precede a diagnosis of multiple sclerosis (MS). Therefore, studying individuals with CIS may lead to breakthroughs in understanding the development and pathogenesis of MS. In this study, serum levels of immunoglobulin (Ig)G, IgA, IgM, and IgG1–4 were measured in 20 people with CIS and compared with those in 10 healthy controls (HC) and 8 people with MS. Serum Ig levels in individuals with CIS were compared with (a) the time to their conversion from CIS to MS, (b) serum levels of antibodies to Epstein–Barr virus, (c) frequencies of T regulatory (Treg), T follicular regulatory (Tfr), and B cell subsets, and (d) Treg/Tfr expression of Helios. Serum IgG, IgM, and IgG2 levels were significantly lower in people with CIS than HC, and IgG, IgM, and IgG1 levels were significantly lower in people with CIS than MS. After adjusting for age, sex, and serum 25(OH) vitamin D3 [25(OH)D] levels, CIS was associated with lower serum levels of IgG and IgG2 compared with HC (p = 0.001 and p < 0.001, respectively). People with MS had lower IgG2 levels (p < 0.001) and IgG2 proportions (%IgG; p = 0.007) compared with HC. After adjusting for age, sex, and 25(OH)D, these outcomes remained, in addition to lower serum IgA levels (p = 0.01) and increased IgG3 levels (p = 0.053) in people with MS compared with HC. Furthermore, serum from people with MS had increased proportions of IgG1 and IgG3 (p = 0.03 and p = 0.02, respectively), decreased proportions of IgG2 (p = 0.007), and greater ratios of “upstream” to “downstream” IgG subclasses (p = 0.001) compared with HC. Serum IgG3 proportions (%IgG) from people with CIS correlated with the frequency of plasmablasts in peripheral blood (p = 0.02). Expression of Helios by Treg and Tfr cell subsets from individuals with CIS correlated with levels of serum IgG2 and IgG4. IgG3 levels and proportions of IgG3 (%IgG) in serum at CIS diagnosis were inversely correlated with the time until conversion to MS (p = 0.018 and p < 0.001, respectively), suggesting they may be useful prognostic markers of individuals with CIS who rapidly convert to MS.
Collapse
Affiliation(s)
- Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Anderson P Jones
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Lilian Cha
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Scott N Byrne
- Sydney Medical School, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, Australia
| | - Judith M Cole
- St John of God Dermatology Clinic, St John of God Hospital, Perth, WA, Australia
| | - David R Booth
- Sydney Medical School, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology & Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- UWA Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154:204-219. [PMID: 29513402 PMCID: PMC5980185 DOI: 10.1111/imm.12922] [Citation(s) in RCA: 626] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, the leading cause of morbidity and disability, are gaining increased attention as they impose a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders. Despite the different aetiologies, for example, infections, genetic mutations, trauma and protein aggregations, neuronal damage is frequently associated with chronic activation of an innate immune response in the CNS. The growing awareness that the immune system is inextricably involved in shaping the brain during development as well as mediating damage, but also regeneration and repair, has stimulated therapeutic approaches to modulate the immune system in neurodegenerative diseases. Here, we review the current understanding of how astrocytes and microglia, as well as neurons and oligodendrocytes, shape the neuroimmune response during development, and how aberrant responses that arise due to genetic or environmental triggers may predispose the CNS to neurodegenerative diseases. We discuss the known interactions between the peripheral immune system and the brain, and review the current concepts on how immune cells enter and leave the CNS. A better understanding of neuroimmune interactions during development and disease will be key to further manipulating these responses and the development of effective therapies to improve quality of life, and reduce the impact of neuroinflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Jodie Stephenson
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Erik Nutma
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Paul van der Valk
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Sandra Amor
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| |
Collapse
|
10
|
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018; 97:742-768. [DOI: 10.1016/j.neuron.2018.01.021] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
|
11
|
Marrie RA. Serum neurofilament light chain in relapsing-remitting MS: Unchaining disease activity prediction? NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e421. [PMID: 29209635 PMCID: PMC5707446 DOI: 10.1212/nxi.0000000000000421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Shefner JM, Sabbagh MN. An Appraisal of Novel Biomarkers for Evaluating and Monitoring Neurologic Diseases: Editorial Introduction. Neurotherapeutics 2017; 14:1-3. [PMID: 27933486 PMCID: PMC5233637 DOI: 10.1007/s13311-016-0502-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jeremy M. Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ USA
| |
Collapse
|