1
|
Zhang J, Jin K, Chen B, Cheng S, Jin J, Yang X, Lu J, Song Q. Sex-dimorphic functions of orexin in neuropsychiatric disorders. Heliyon 2024; 10:e36402. [PMID: 39253145 PMCID: PMC11382083 DOI: 10.1016/j.heliyon.2024.e36402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The orexin system regulates a variety of physiological functions, including the sleep-wake cycle, addiction, foraging behavior, stress and cognitive functioning. Orexin levels in central and peripheral are related to the pathogenesis of many diseases, most notably the narcolepsy, eating disorders, stress-related psychiatric disorders, and neurodegenerative diseases. Recently, it has been reported that the orexin system is distinctly sexually dimorphic, and is strongly associated with neuropsychiatric disorders. In this review, we analyzed advancements in the sex differences in the orexin system and their connection to psychoneurological conditions. Considering the scarcity of research in this domain, more research is imperative to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Jinghan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Shangping Cheng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jinfan Jin
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Xiaolan Yang
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| |
Collapse
|
2
|
Xiao X, Rui Y, Jin Y, Chen M. Relationship of Sleep Disorder with Neurodegenerative and Psychiatric Diseases: An Updated Review. Neurochem Res 2024; 49:568-582. [PMID: 38108952 DOI: 10.1007/s11064-023-04086-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sleep disorders affect many people worldwide and can accompany neurodegenerative and psychiatric diseases. Sleep may be altered before the clinical manifestations of some of these diseases appear. Moreover, some sleep disorders affect the physiological organization and function of the brain by influencing gene expression, accelerating the accumulation of abnormal proteins, interfering with the clearance of abnormal proteins, or altering the levels of related hormones and neurotransmitters, which can cause or may be associated with the development of neurodegenerative and psychiatric diseases. However, the detailed mechanisms of these effects are unclear. This review mainly focuses on the relationship between and mechanisms of action of sleep in Alzheimer's disease, depression, and anxiety, as well as the relationships between sleep and Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. This summary of current research hotspots may provide researchers with better clues and ideas to develop treatment solutions for neurodegenerative and psychiatric diseases associated with sleep disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Rui
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Jin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Sleep Disorders in Patients with Choreic Syndromes. Curr Neurol Neurosci Rep 2023; 23:361-379. [PMID: 37269451 DOI: 10.1007/s11910-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Patients with different types of choreic syndromes, specially those with Huntington's (HD) and Wilson's (WD) diseases, report frequent sleep complaints. This review focuses on the main findings of studies addressing the sleep features in these diseases, and other less frequent causes of chorea associated with sleep disorders, including a new syndrome described in the last decade associated with IgLON5 antibodies. RECENT FINDINGS Patients with HD and WD showed a bad quality of sleep and high frequency of insomnia and excessive daytime somnolence. WD patients also showed high scores on a specific scale for rapid eye movement sleep behavior disorders. HD and WD share decreased sleep efficiency and increased REM sleep latencies, percentage of sleep stage N1, and wake after sleep onset (WASO) among their polysomnographic features. Patients with HD and WD showed a high prevalence of different sleep disorders. Patients with other causes of chorea, including neuroacanthocytosis, parasomnia with sleep breathing disorder associated with antibodies to IgLON5, Sydenham's chorea, and choreic syndromes associated to certain genetic mutations show sleep disorders as well.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10 E-28500, Arganda del Rey, Madrid, Spain.
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10 E-28500, Arganda del Rey, Madrid, Spain
| | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
4
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Zaafar D, Batiha GES. Orexin pathway in Parkinson's disease: a review. Mol Biol Rep 2023:10.1007/s11033-023-08459-5. [PMID: 37155018 DOI: 10.1007/s11033-023-08459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al Beheira, Egypt.
| |
Collapse
|
5
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
6
|
Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat Sci Sleep 2023; 15:17-38. [PMID: 36713640 PMCID: PMC9879039 DOI: 10.2147/nss.s201994] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/08/2023] [Indexed: 01/23/2023] Open
Abstract
After a detailed description of orexins and their roles in sleep and other medical disorders, we discuss here the current clinical evidence on the effects of dual (DORAs) or selective (SORAs) orexin receptor antagonists on insomnia with the aim to provide recommendations for their further assessment in a context of personalized and precision medicine. In the last decade, many trials have been conducted with orexin receptor antagonists, which represent an innovative and valid therapeutic option based on the multiple mechanisms of action of orexins on different biological circuits, both centrally and peripherally, and their role in a wide range of medical conditions which are often associated with insomnia. A very interesting aspect of this new category of drugs is that they have limited abuse liability and their discontinuation does not seem associated with significant rebound effects. Further studies on the efficacy of DORAs are required, especially on children and adolescents and in particular conditions, such as menopause. Which DORA is most suitable for each patient, based on comorbidities and/or concomitant treatments, should be the focus of further careful research. On the contrary, studies on SORAs, some of which seem to be appropriate also in insomnia in patients with psychiatric diseases, are still at an early stage and, therefore, do not allow to draw definite conclusions.
Collapse
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Lourdes M DelRosso
- Pulmonary and Sleep Medicine, University of California San Francisco-Fresno, Fresno, CA, USA
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
7
|
Saade-Lemus S, Videnovic A. Sleep Disorders and Circadian Disruption in Huntington's Disease. J Huntingtons Dis 2023; 12:121-131. [PMID: 37424473 PMCID: PMC10473087 DOI: 10.3233/jhd-230576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Sleep and circadian alterations are common in patients with Huntington's disease (HD). Understanding the pathophysiology of these alterations and their association with disease progression and morbidity can guide HD management. We provide a narrative review of the clinical and basic-science studies centered on sleep and circadian function on HD. Sleep/wake disturbances among HD patients share many similarities with other neurodegenerative diseases. Overall, HD patients and animal models of the disease present with sleep changes early in the clinical course of the disease, including difficulties with sleep initiation and maintenance leading to decreased sleep efficiency, and progressive deterioration of normal sleep architecture. Despite this, sleep alterations remain frequently under-reported by patients and under-recognized by health professionals. The degree of sleep and circadian alterations has not consistently shown to be CAG dose-dependent. Evidence based treatment recommendations are insufficient due to lack of well-designed intervention trials. Approaches aimed at improving circadian entrainment, such as including light therapy, and time-restricted feeding have demonstrated a potential to delay symptom progression in some basic HD investigations. Larger study cohorts, comprehensive assessment of sleep and circadian function, and reproducibility of findings are needed in future in order to better understand sleep and circadian function in HD and to develop effective treatments.
Collapse
Affiliation(s)
- Sandra Saade-Lemus
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Morton AJ. Sleep and Circadian Rhythm Dysfunction in Animal Models of Huntington's Disease. J Huntingtons Dis 2023; 12:133-148. [PMID: 37334613 PMCID: PMC10473141 DOI: 10.3233/jhd-230574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Sleep and circadian disruption affects most individuals with Huntington's disease (HD) at some stage in their lives. Sleep and circadian dysregulation are also present in many mouse and the sheep models of HD. Here I review evidence for sleep and/or circadian dysfunction in HD transgenic animal models and discuss two key questions: 1) How relevant are such findings to people with HD, and 2) Whether or not therapeutic interventions that ameliorate deficits in animal models of HD might translate to meaningful therapies for people with HD.
Collapse
Affiliation(s)
- A. Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Owen NE, Barker RA, Voysey ZJ. Sleep Dysfunction in Huntington's Disease: Impacts of Current Medications and Prospects for Treatment. J Huntingtons Dis 2023; 12:149-161. [PMID: 37248911 PMCID: PMC10473096 DOI: 10.3233/jhd-230567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Sleep dysfunction is highly prevalent in Huntington's disease (HD). Increasing evidence suggests that such dysfunction not only impairs quality of life and exacerbates symptoms but may even accelerate the underlying disease process. Despite this, current HD treatment approaches neither consider the impact of commonly used medications on sleep, nor directly tackle sleep dysfunction. In this review, we discuss approaches to these two areas, evaluating not only literature from clinical studies in HD, but also that from parallel neurodegenerative conditions and preclinical models of HD. We conclude by summarizing a hierarchical framework of current medications with regard to their impact on sleep, and by outlining key emerging sleep therapies.
Collapse
Affiliation(s)
- Natalia E. Owen
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Zanna J. Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Fukushi I, Yokota S, Takeda K, Terada J, Umeda A, Yoshizawa M, Kono Y, Hasebe Y, Onimaru H, Pokorski M, Okada Y. Dual orexin receptor blocker suvorexant attenuates hypercapnic ventilatory augmentation in mice. Brain Res 2022; 1795:148061. [PMID: 36037880 DOI: 10.1016/j.brainres.2022.148061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Suvorexant (Belsomra(R)), a dual orexin receptor antagonist widely used in the treatment of insomnia, inhibits the arousal system in the brain. However, the drug's ventilatory effects have not been fully explored. This study aims to investigate the expression of orexin receptors in respiratory neurons and the effects of suvorexant on ventilation. Immunohistology of brainstem orexin receptor OX2R expression was performed in adult mice (n=4) in (1) rostral ventral respiratory group (rVRG) neurons projecting to the phrenic nucleus (PhN) retrogradely labeled by Fluoro-Gold (FG) tracer, (2) neurons immunoreactive for paired like homeobox 2b (Phox2b) in the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN), and (3) neurons immunoreactive for neurokinin 1 receptor (NK1R) and somatostatin (SST) in the preBötzinger complex (preBötC). Additionally, we measured in vivo ventilatory responses to hyperoxic hypercapnia (5% CO2) and hypoxia (10% O2) before and after suvorexant pretreatment (10 and cumulative 100 mg/kg) in unrestrained mice (n=10) in a body plethysmograph. We found the OX2R immunoreactive materials in pFRG/RTN Phox2b and preBötC NK1R/SST immunoreactive neurons but not in FG-labeled rVRG neurons, which suggests the involvement of orexin in respiratory control. Further, suvorexant expressly suppressed the hypercapnic ventilatory augmentation, otherwise unaffecting ventilation. Central orexin is involved in shaping the hypercapnic ventilatory chemosensitivity. Suppression of hypercapnic ventilatory augmentation by the orexin receptor antagonist suvorexant calls for caution in its use in pathologies that may progress to hypercapnic respiratory failure, or sleep-disordered breathing. Clinical trials are required to explore the role of targeted pharmacological inhibition of orexin in ventilatory pathologies.
Collapse
Affiliation(s)
- Isato Fukushi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan; Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare Shioya Hospital, Yaita, Japan
| | - Masashi Yoshizawa
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan; Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yosuke Kono
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan; Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yohei Hasebe
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan; Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | | | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
11
|
Wang Q, Cao F, Wu Y. Orexinergic System in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:713201. [PMID: 34483883 PMCID: PMC8416170 DOI: 10.3389/fnagi.2021.713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023] Open
Abstract
Orexinergic system consisting of orexins and orexin receptors plays an essential role in regulating sleep–wake states, whereas sleep disruption is a common symptom of a number of neurodegenerative diseases. Emerging evidence reveals that the orexinergic system is disturbed in various neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and multiple sclerosis (MS), whereas the dysregulation of orexins and/or orexin receptors contributes to the pathogenesis of these diseases. In this review, we summarized advanced knowledge of the orexinergic system and its role in sleep, and reviewed the dysregulation of the orexinergic system and its role in the pathogenesis of AD, PD, HD, and MS. Moreover, the therapeutic potential of targeting the orexinergic system for the treatment of these diseases was discussed.
Collapse
Affiliation(s)
- Qinqin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fei Cao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, China
| |
Collapse
|
12
|
Bailey GA, Hubbard EK, Fasano A, Tijssen MA, Lynch T, Anderson KN, Peall KJ. Sleep disturbance in movement disorders: insights, treatments and challenges. J Neurol Neurosurg Psychiatry 2021; 92:723-736. [PMID: 33741740 DOI: 10.1136/jnnp-2020-325546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Abstract
Sleep and circadian rhythm disturbances are central features of many movement disorders, exacerbating motor and non-motor symptoms and impairing quality of life. Understanding these disturbances to sleep is clinically important and may further our understanding of the underlying movement disorder. This review evaluates the current anatomical and neurochemical understanding of normal sleep and the recognised primary sleep disorders. In addition, we undertook a systematic review of the evidence for disruption to sleep across multiple movement disorders. Rapid eye movement sleep behaviour disorder has emerged as the most reliable prodromal biomarker for the alpha synucleinopathies, including Parkinson's disease and multiple system atrophy, often preceding motor symptom onset by several years. Abnormal sleep has also been described for many other movement disorders, but further evidence is needed to determine whether this is a primary or secondary phenotypic component of the underlying condition. Medication used in the treatment of motor symptoms also affects sleep and can aggravate or cause certain sleep disorders. Within the context of movement disorders, there is also some suggestion of a shared underlying mechanism for motor and sleep pathophysiology, with evidence implicating thalamic and brainstem structures and monoaminergic neurotransmission. This review highlights the need for an understanding of normal and abnormal sleep within the movement disorder clinic, an ability to screen for specific causes of poor sleep and to treat sleep disturbance to improve quality of life. Key sleep disorders also act as important biomarkers and have implications in diagnosis, prognosis and the development of future therapies.
Collapse
Affiliation(s)
- Grace A Bailey
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Emily K Hubbard
- School of Medicine, Cardiff University, Cardiff, South Glamorgan, UK
| | - Alfonso Fasano
- Edmond J Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Marina Aj Tijssen
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Timothy Lynch
- Dublin Neurological Institute, The Mater Misericordiae University Hospital, Dublin, Dublin, Ireland
| | - Kirstie N Anderson
- Department of Neurology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, Newcastle upon Tyne, UK
| | - Kathryn J Peall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Voysey Z, Fazal SV, Lazar AS, Barker RA. The sleep and circadian problems of Huntington's disease: when, why and their importance. J Neurol 2020; 268:2275-2283. [PMID: 33355880 PMCID: PMC8179890 DOI: 10.1007/s00415-020-10334-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Introduction Mounting evidence supports the existence of an important feedforward cycle between sleep and neurodegeneration, wherein neurodegenerative diseases cause sleep and circadian abnormalities, which in turn exacerbate and accelerate neurodegeneration. If so, sleep therapies bear important potential to slow progression in these diseases. Findings This cycle is challenging to study, as its bidirectional nature renders cause difficult to disentangle from effect. Likewise, well-controlled intervention studies are often impractical in the setting of established neurodegenerative disease. It is this that makes understanding sleep and circadian abnormalities in Huntington’s disease (HD) important: as a monogenic fully penetrant neurodegenerative condition presenting in midlife, it provides a rare opportunity to study sleep and circadian abnormalities longitudinally, prior to and throughout disease manifestation, and in the absence of confounds rendered by age and comorbidities. It also provides potential to trial sleep therapies at a preclinical or early disease stage. Moreover, its monogenic nature facilitates the development of transgenic animal models through which to run parallel pre-clinical studies. HD, therefore, provides a key model condition through which to gain new insights into the sleep-neurodegeneration interface. Conclusions Here, we begin by summarising contemporary knowledge of sleep abnormalities in HD, and consider how well these parallel those of Alzheimer’s and Parkinson’s as more common neurodegenerative conditions. We then discuss what is currently known of the sleep-neurodegeneration cyclical relationship in HD. We conclude by outlining key directions of current and future investigation by which to advance the sleep-neurodegeneration field via studies in HD.
Collapse
Affiliation(s)
- Z Voysey
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | - S V Fazal
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - A S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - R A Barker
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Al-Kuraishy HM, Abdulhadi MH, Hussien NR, Al-Niemi MS, Rasheed HA, Al-Gareeb AI. Involvement of orexinergic system in psychiatric and neurodegenerative disorders: A scoping review. Brain Circ 2020; 6:70-80. [PMID: 33033776 PMCID: PMC7511915 DOI: 10.4103/bc.bc_42_19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/20/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Orexin is a neuropeptide secreted from lateral hypothalamus and pre-frontal cortex concerned in the wakefulness and excitement. This study aimed to review the possible neurobiological effect of orexin. A diversity of search strategies was adopted and assumed which included electronic database searches of Medline and PubMed using MeSH terms, keywords, and title words during the search. Orexin plays a vital role in activation of learning, memory acquisition, and consolidation through activation of monoaminergic system, which affect cognitive flexibility and cognitive function. Orexin stimulates adrenocorticotropin and corticosteroid secretions via activation of central corticotropin-releasing hormone. Cerebrospinal fluid (CSF) and serum orexin serum levels are reduced in depression, schizophrenia, and narcolepsy. However, high orexin serum levels are revealed in drug addictions. Regarding neurodegenerative brain diseases, CSF and serum orexin serum levels are reduced Parkinson disease, Alzheimer dementia, Huntington's disease, amyotrphic lateral sclerosis, and multiple sclerosis. Orexin antagonist leads to significant reduction of sympathetic over-activity during withdrawal syndrome. As well, orexin antagonist improves sleep pattern. Orexinergic system is involved in the different psychiatric and neurological disorders; therefore, targeting of this system could be possible novel pathway in the management of these disorders. In addition, measurement of CSF and serum orexin levels might predict the relapse and withdrawal of addict patients.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - May H. Abdulhadi
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Nawar R. Hussien
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Marwa S. Al-Niemi
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Huda A. Rasheed
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
15
|
Zhou F, Yan XD, Wang C, He YX, Li YY, Zhang J, Wang ZJ, Cai HY, Qi JS, Wu MN. Suvorexant ameliorates cognitive impairments and pathology in APP/PS1 transgenic mice. Neurobiol Aging 2020; 91:66-75. [PMID: 32224066 DOI: 10.1016/j.neurobiolaging.2020.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/28/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Cognitive impairments and circadian rhythm disorders are the main clinical manifestations of Alzheimer's disease (AD). Orexin has been reported as abnormally elevated in the cerebrospinal fluid of AD patients, accompanied with cognitive impairments. Our recent research revealed that suvorexant, a dual orexin receptor antagonist, could improve behavioral circadian rhythm disorders in 9-month-old APP/PS1 mice. Here we further observed whether suvorexant could ameliorate the cognitive decline in APP/PS1 mice by using behavioral tests, and investigated the possible mechanisms by in vivo electrophysiological recording, western blot, and immunochemistry. The results showed that suvorexant treatment effectively ameliorated the cognitive impairments, alleviated in vivo hippocampal long-term potentiation suppression, restored the circadian phosphorylated CREB expression in the hippocampus, and reduced amyloid-β protein deposition in the hippocampus and cortex in APP/PS1 mice. These results indicate that the neuroprotective effects of suvorexant against AD are involved in the reduction of amyloid-β plaques, improvement of synaptic plasticity, and circadian expression of phosphorylated CREB, suggesting that suvorexant could be beneficial to the prevention and treatment of AD.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu-Dong Yan
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ye-Xin He
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Yi-Ying Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jun Zhang
- Functional Laboratory Center, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
16
|
Gamble MC, Katsuki F, McCoy JG, Strecker RE, McKenna JT. The dual orexinergic receptor antagonist DORA-22 improves the sleep disruption and memory impairment produced by a rodent insomnia model. Sleep 2019; 43:5583907. [PMID: 31595304 DOI: 10.1093/sleep/zsz241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
AbstractInsomnia-related sleep disruption can contribute to impaired learning and memory. Treatment of insomnia should ideally improve the sleep profile while minimally affecting mnemonic function, yet many hypnotic drugs (e.g. benzodiazepines) are known to impair memory. Here, we used a rat model of insomnia to determine whether the novel hypnotic drug DORA-22, a dual orexin receptor antagonist, improves mild stress-induced insomnia with minimal effect on memory. Animals were first trained to remember the location of a hidden platform (acquisition) in the Morris Water Maze and then administered DORA-22 (10, 30, or 100 mg/kg doses) or vehicle control. Animals were then subjected to a rodent insomnia model involving two exposures to dirty cages over a 6-hr time period (at time points 0 and 3 hr), followed immediately by a probe trial in which memory of the water maze platform location was evaluated. DORA-22 treatment improved the insomnia-related sleep disruption—wake was attenuated and NREM sleep was normalized. REM sleep amounts were enhanced compared with vehicle treatment for one dose (30 mg/kg). In the first hour of insomnia model exposure, DORA-22 promoted the number and average duration of NREM sleep spindles, which have been previously proposed to play a role in memory consolidation (all doses). Water maze measures revealed probe trial performance improvement for select doses of DORA-22, including increased time spent in the platform quadrant (10 and 30 mg/kg) and time spent in platform location and number of platform crossings (10 mg/kg only). In conclusion, DORA-22 treatment improved insomnia-related sleep disruption and memory consolidation deficits.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
| | - Fumi Katsuki
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - John G McCoy
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Neuroscience Program, Stonehill College, Easton, MA
| | - Robert E Strecker
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - James Timothy McKenna
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| |
Collapse
|