1
|
Abram M, Jakubiec M, Koczurkiewicz-Adamczyk P, Doroz-Płonka A, Rapacz A, Kamiński K. Development of Novel Alaninamide Derivatives with Anticonvulsant Activity and Favorable Safety Profiles in Animal Models. Int J Mol Sci 2024; 25:9861. [PMID: 39337345 PMCID: PMC11432405 DOI: 10.3390/ijms25189861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
In our current study, we developed a focused series of original ((benzyloxy)benzyl)propanamide derivatives that demonstrated potent activity across in vivo mouse seizure models, specifically, maximal electroshock (MES) and 6 Hz (32 mA) seizures. Among these derivatives, compound 5 emerged as a lead molecule, exhibiting robust protection following intraperitoneal (i.p.) injection, as follows: ED50 = 48.0 mg/kg in the MES test, ED50 = 45.2 mg/kg in the 6 Hz (32 mA) test, and ED50 = 201.3 mg/kg in the 6 Hz (44 mA) model. Additionally, compound 5 displayed low potential for inducing motor impairment in the rotarod test (TD50 > 300 mg/kg), indicating a potentially favorable therapeutic window. In vitro toxicity assays further supported its promising safety profile. We also attempted to identify a plausible mechanism of action of compound 5 by applying both binding and functional in vitro studies. Overall, the data obtained for this lead molecule justifies the more comprehensive preclinical development of compound 5 as a candidate for a potentially broad-spectrum and safe anticonvulsant.
Collapse
Affiliation(s)
- Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
2
|
Jakubiec M, Abram M, Zagaja M, Socała K, Panic V, Latacz G, Mogilski S, Szafarz M, Szala-Rycaj J, Saunders J, West PJ, Nieoczym D, Przejczowska-Pomierny K, Szulczyk B, Krupa A, Wyska E, Wlaź P, Metcalf CS, Wilcox K, Andres-Mach M, Kamiński RM, Kamiński K. Discovery and Profiling of New Multimodal Phenylglycinamide Derivatives as Potent Antiseizure and Antinociceptive Drug Candidates. ACS Chem Neurosci 2024; 15:3228-3256. [PMID: 39166702 PMCID: PMC11378297 DOI: 10.1021/acschemneuro.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
We developed a focused series of original phenyl-glycinamide derivatives which showed potent activity across in vivo mouse seizure models, namely, maximal electroshock (MES) and 6 Hz (using both 32 and 44 mA current intensities) seizure models. Following intraperitoneal (i.p.) administration, compound (R)-32, which was identified as a lead molecule, demonstrated potent protection against all seizure models with ED50 values of 73.9 mg/kg (MES test), 18.8 mg/kg (6 Hz, 32 mA test), and 26.5 mg/kg (6 Hz, 44 mA test). Furthermore, (R)-32 demonstrated efficacy in both the PTZ-induced kindling paradigm and the ivPTZ seizure threshold test. The expression of neurotrophic factors, such as mature brain-derived neurotrophic factor (mBDNF) and nerve growth factor (NGF), in the hippocampus and/or cortex of mice, and the levels of glutamate and GABA were normalized after PTZ-induced kindling by (R)-32. Importantly, besides antiseizure activity, (R)-32 demonstrated potent antinociceptive efficacy in formalin-induced pain, capsaicin-induced pain, as well as oxaliplatin- and streptozotocin-induced peripheral neuropathy in mice (i.p.). No influence on muscular strength and body temperature in mice was observed. Pharmacokinetic studies and in vitro ADME-Tox data (i.e., high metabolic stability in human liver microsomes, a weak influence on CYPs, no hepatotoxicity, satisfactory passive transport, etc.) proved favorable drug-like properties of (R)-32. Thermal stability of (R)-32 shown in thermogravimetry and differential scanning calorimetry gives the opportunity to develop innovative oral solid dosage forms loaded with this compound. The in vitro binding and functional assays indicated its multimodal mechanism of action. (R)-32, beyond TRPV1 antagonism, inhibited calcium and sodium currents at a concentration of 10 μM. Therefore, the data obtained in the current studies justify a more detailed preclinical development of (R)-32 for epilepsy and pain indications.
Collapse
Affiliation(s)
- Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Vanja Panic
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Szczepan Mogilski
- Department Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Jerry Saunders
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Peter J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Bartłomiej Szulczyk
- Chair and Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, Warsaw 02-097, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Karen Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| |
Collapse
|
3
|
Jakubiec M, Abram M, Zagaja M, Andres-Mach M, Szala-Rycaj J, Latacz G, Honkisz-Orzechowska E, Mogilski S, Kubacka M, Szafarz M, Pociecha K, Przejczowska-Pomierny K, Wyska E, Socała K, Nieoczym D, Szulczyk B, Wlaź P, Metcalf CS, Wilcox K, Kamiński RM, Kamiński K. Novel Alaninamide Derivatives with Drug-like Potential for Development as Antiseizure and Antinociceptive Therapies─In Vitro and In Vivo Characterization. ACS Chem Neurosci 2024; 15:2198-2222. [PMID: 38741575 PMCID: PMC11157491 DOI: 10.1021/acschemneuro.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
In the present study, a series of original alaninamide derivatives have been designed applying a combinatorial chemistry approach, synthesized, and characterized in the in vivo and in vitro assays. The obtained molecules showed potent and broad-spectrum activity in basic seizure models, namely, the maximal electroshock (MES) test, the 6 Hz (32 mA) seizure model, and notably, the 6 Hz (44 mA) model of pharmacoresistant seizures. Most potent compounds 26 and 28 displayed the following pharmacological values: ED50 = 64.3 mg/kg (MES), ED50 = 15.6 mg/kg (6 Hz, 32 mA), ED50 = 29.9 mg/kg (6 Hz, 44 mA), and ED50 = 34.9 mg/kg (MES), ED50 = 12.1 mg/kg (6 Hz, 32 mA), ED50 = 29.5 mg/kg (6 Hz, 44 mA), respectively. Additionally, 26 and 28 were effective in the ivPTZ seizure threshold test and had no influence on the grip strength. Moreover, lead compound 28 was tested in the PTZ-induced kindling model, and then, its influence on glutamate and GABA levels in the hippocampus and cortex was evaluated by the high-performance liquid chromatography (HPLC) method. In addition, 28 revealed potent efficacy in formalin-induced tonic pain, capsaicin-induced pain, and oxaliplatin- and streptozotocin-induced peripheral neuropathy. Pharmacokinetic studies and in vitro ADME-Tox data proved favorable drug-like properties of 28. The patch-clamp recordings in rat cortical neurons showed that 28 at a concentration of 10 μM significantly inhibited fast sodium currents. Therefore, 28 seems to be an interesting candidate for future preclinical development in epilepsy and pain indications.
Collapse
Affiliation(s)
- Marcin Jakubiec
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Michał Abram
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Mirosław Zagaja
- Department
of Experimental Pharmacology, Institute
of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Marta Andres-Mach
- Department
of Experimental Pharmacology, Institute
of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Joanna Szala-Rycaj
- Department
of Experimental Pharmacology, Institute
of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Szczepan Mogilski
- Department
Pharmacodynamics, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Department
Pharmacodynamics, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Małgorzata Szafarz
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Pociecha
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Przejczowska-Pomierny
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Socała
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences,
Faculty of Biology and Biotechnology, Maria
Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Dorota Nieoczym
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences,
Faculty of Biology and Biotechnology, Maria
Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Bartłomiej Szulczyk
- Chair
and Department of Pharmacotherapy and Pharmaceutical Care, Centre
for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Piotr Wlaź
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences,
Faculty of Biology and Biotechnology, Maria
Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Cameron S. Metcalf
- Department
of Pharmacology and Toxicology, University
of Utah, Salt Lake City, Utah 84112, United States
| | - Karen Wilcox
- Department
of Pharmacology and Toxicology, University
of Utah, Salt Lake City, Utah 84112, United States
| | - Rafał M. Kamiński
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Kamiński
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
4
|
Hawash M, Qneibi M, Natsheh H, Mohammed NH, Hamda LA, Kumar A, Olech B, Dominiak PM, Bdir S, Bdair M. Evaluating the Neuroprotective Potential of Novel Benzodioxole Derivatives in Parkinson's Disease via AMPA Receptor Modulation. ACS Chem Neurosci 2024; 15:2334-2349. [PMID: 38747411 DOI: 10.1021/acschemneuro.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease (PD) is a significant health issue because it gradually damages the nervous system. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play a significant role in the development of PD. The current investigation employed hybrid benzodioxole-propanamide (BDZ-P) compounds to get information on AMPA receptors, analyze their biochemical and biophysical properties, and assess their neuroprotective effects. Examining the biophysical characteristics of all the subunits of the AMPA receptor offers insights into the impact of BDZ-P on the desensitization and deactivation rate. It demonstrates a partial improvement in the locomotor capacities in a mouse model of Parkinson's disease. In addition, the in vivo experiment assessed the locomotor activity by utilizing the open-field test. Our findings demonstrated that BDZ-P7 stands out with its remarkable potency, inhibiting the GluA2 subunit nearly 8-fold with an IC50 of 3.03 μM, GluA1/2 by 7.5-fold with an IC50 of 3.14 μM, GluA2/3 by nearly 7-fold with an IC50 of 3.19 μM, and GluA1 by 6.5-fold with an IC50 of 3.2 μM, significantly impacting the desensitization and deactivation rate of the AMPA receptor. BDZ-P7 showed an in vivo impact of partially reinstating locomotor abilities in a mouse model of PD. The results above suggest that the BDZ-P7 compounds show great promise as top contenders for the development of novel neuroprotective therapies.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Hiba Natsheh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Noor Haj Mohammed
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Lubaba Abu Hamda
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Anil Kumar
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Barbara Olech
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, ul. S. Banacha 2c, 02-097 Warsaw, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| |
Collapse
|
5
|
Perveen N, Alqahtani F, Ashraf W, Fawad Rasool M, Muhammad Muneeb Anjum S, Kaukab I, Ahmad T, Alqarni SA, Imran I. Perampanel increases seizure threshold in pentylenetetrazole-kindled mice and improves behavioral dysfunctions by modifying mRNA expression levels of BDNF/TrkB and inflammatory markers. Saudi Pharm J 2024; 32:101930. [PMID: 38226351 PMCID: PMC10788632 DOI: 10.1016/j.jsps.2023.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
Perampanel (PER), a novel 3rd-generation antiseizure drug that modulates altered post-synaptic glutamatergic storming by selectively inhibiting AMPA receptors, is recently approved to treat intractable forms of seizures. However, to date, presumably consequences of long-term PER therapy on the comorbid deleterious psychiatric disturbances and its correlation with neuroinflammatory parameters are not fully investigated in chronic models of epilepsy. Therefore, we investigated the real-time effect of PER on brain electroencephalographic (EEG) activity, behavioral alterations, redox balance, and relative mRNA expression in pentylenetetrazole (PTZ) induced kindling. Male BALB/c mice were pretreated with PER (0.125, 0.25, and 0.5 mg/kg) for 3 weeks and challenged with 11 injections of PTZ at the sub-threshold dose of 40 mg/kg every other day. vEEG from implanted cortical electrodes was monitored to elucidate seizure propagation and behavioral manifestations. Recorded EEG signals exhibited that PER 0.5 mg/kg pretreatment exceptionally impeded the onset of sharp epileptic spike-wave discharges and associated motor symptoms. Additionally, qEEG analysis showed that PER prevented alterations in absolute mean spectral power and reduced RMS amplitude of epileptogenic spikes vs PTZ control. Furthermore, our outcomes illustrated that PER dose-dependently attenuated PTZ-evoked anxiety-like behavior, memory deficits, and depressive-like behavior that was validated by a series of behavioral experiments. Moreover PER, significantly reduced lipid peroxidation, AChE, and increased levels of SOD and total thiol in the mice brain via AMPAR antagonism. Post-PTZ kindling provoked overstimulation of BDNF/TrkB signaling and increased release of pro-inflammatory cytokines that were reversed by PER with suppression of iNOS in brain immune cells. In conclusion, our findings highlight that PER might play an auspicious preventive role in the proepileptic transformation of brain circuits via suppression of BDNF/TrkB signaling and reduced transcriptional levels of neuroinflammatory markers leading to improvised epilepsy-induced neurobehavioral and neurochemical effects.
Collapse
Affiliation(s)
- Nadia Perveen
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Iram Kaukab
- District Quality Control Board, Multan, Pakistan
| | - Tanveer Ahmad
- Institut pour l’Avancée des Biosciences, Centre de Recherche UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, France
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
6
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Yang CS, Wu MC, Lai MC, Wu SN, Huang CW. Identification of New Antiseizure Medication Candidates in Preclinical Animal Studies. Int J Mol Sci 2023; 24:13143. [PMID: 37685950 PMCID: PMC10487685 DOI: 10.3390/ijms241713143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated rodent models of seizures employed in pharmacological researches and comprehensively reviews updated advances of novel antiseizure candidates in the preclinical phase. Newly discovered compounds that demonstrate antiseizure efficacy in preclinical trials will be discussed in the review. It is inspiring that several candidates exert promising antiseizure activities in drug-resistant seizure models. The representative compounds consist of derivatives of hybrid compounds that integrate multiple approved antiseizure medications, novel positive allosteric modulators targeting subtype-selective γ-Aminobutyric acid type A receptors, and a derivative of cinnamamide. Although the precise molecular mechanism, pharmacokinetic properties, and safety are not yet fully clear in every novel antiseizure candidate, the adapted approaches to design novel antiseizure medications provide new insights to overcome drug-resistant epilepsy.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Man-Chun Wu
- Department of Family Medicine and Preventive Medicine Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
8
|
Andres-Mach M, Zagaja M, Szala-Rycaj J, Szewczyk A, Abram M, Jakubiec M, Ciepiela K, Socała K, Wlaź P, Latacz G, Khan N, Kaminski K. In Vivo and In Vitro Characterization of Close Analogs of Compound KA-11, a New Antiseizure Drug Candidate. Int J Mol Sci 2023; 24:ijms24098302. [PMID: 37176010 PMCID: PMC10179080 DOI: 10.3390/ijms24098302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Epilepsy is a neurological disorder involving a number of disease syndromes with a complex etiology. A properly matched antiseizure drug (ASD) gives remission in up to 70% of patients. Nevertheless, there is still a group of about 30% of patients suffering from drug-resistant epilepsy. Consequently, the development of new more effective and/or safer ASDs is still an unmet clinical need. Thus, our current studies were focused on the structural optimization/modifications of one of the leading compounds, KA-11, aiming at the improvement of its antiseizure activity. As a result, we designed and synthesized two close analogs with highly pronounced drug-like physicochemical properties according to in silico predictions, namely KA-228 and KA-232, which were subsequently tested in a panel of animal seizure models, i.e., MES, 6 Hz (32 mA), scPTZ and ivPTZ. Among these compounds, KA-232, which was designed as a water-soluble salt, was distinctly more effective than KA-228 and assured similar antiseizure protection as its chemical prototype KA-11. With the aim of a more detailed characterization of both new molecules, in vitro binding tests were performed to evaluate the potential mechanisms of action. Furthermore, KA-232 was also evaluated in several ADME-Tox studies, and the results obtained strongly supported its drug-like potential. The proposed chemical modification of KA-11 enabled the identification of new pharmacologically active chemotypes, particularly water-soluble KA-232, which, despite the lack of better efficacy than the leading compound, may be used as a chemical prototype for the development of new ASDs, as well as substances potentially active in other neurological or neurodegenerative conditions.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Aleksandra Szewczyk
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
9
|
Matias M, Santos AO, Silvestre S, Alves G. Fighting Epilepsy with Nanomedicines-Is This the Right Weapon? Pharmaceutics 2023; 15:pharmaceutics15020306. [PMID: 36839629 PMCID: PMC9959131 DOI: 10.3390/pharmaceutics15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is a chronic and complex condition and is one of the most common neurological diseases, affecting about 50 million people worldwide. Pharmacological therapy has been, and is likely to remain, the main treatment approach for this disease. Although a large number of new antiseizure drugs (ASDs) has been introduced into the market in the last few years, many patients suffer from uncontrolled seizures, demanding the development of more effective therapies. Nanomedicines have emerged as a promising approach to deliver drugs to the brain, potentiating their therapeutic index. Moreover, nanomedicine has applied the knowledge of nanoscience, not only in disease treatment but also in prevention and diagnosis. In the current review, the general features and therapeutic management of epilepsy will be addressed, as well as the main barriers to overcome to obtain better antiseizure therapies. Furthermore, the role of nanomedicines as a valuable tool to selectively deliver drugs will be discussed, considering the ability of nanocarriers to deal with the less favourable physical-chemical properties of some ASDs, enhance their brain penetration, reduce the adverse effects, and circumvent the concerning drug resistance.
Collapse
Affiliation(s)
- Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Adriana O. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
10
|
Abram M, Jakubiec M, Reeb K, Cheng MH, Gedschold R, Rapacz A, Mogilski S, Socała K, Nieoczym D, Szafarz M, Latacz G, Szulczyk B, Kalinowska-Tłuścik J, Gawel K, Esguerra CV, Wyska E, Müller CE, Bahar I, Fontana ACK, Wlaź P, Kamiński RM, Kamiński K. Discovery of ( R)- N-Benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [ (R)-AS-1], a Novel Orally Bioavailable EAAT2 Modulator with Drug-like Properties and Potent Antiseizure Activity In Vivo. J Med Chem 2022; 65:11703-11725. [PMID: 35984707 PMCID: PMC9469208 DOI: 10.1021/acs.jmedchem.2c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders.
Collapse
Affiliation(s)
- Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katelyn Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Robin Gedschold
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097Warsaw, Poland
| | - Justyna Kalinowska-Tłuścik
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-090Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349Oslo, Norway
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| |
Collapse
|
11
|
Lei J, Deng Y, Ma S. Downregulation of TGIF2 is possibly correlated with neuronal apoptosis and autism-like symptoms in mice. Brain Behav 2022; 12:e2610. [PMID: 35592894 PMCID: PMC9226810 DOI: 10.1002/brb3.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/24/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND TGFB-induced factor homeobox 2 (TGIF2) has been reported to exert essential functions in brain development. This study aimed to elucidate the correlation of TGIF2 with autism, a neurodevelopmental condition which presents with severe communication problems. METHODS An autism-related gene expression dataset GSE36315 was used to analyze aberrantly expressed genes in autistic brain tissues. Maternal mice were treated with valproate (VPA), and their offspring were selected as model mice with autism. The functions of TGIF2 in autism-like symptoms in mice were examined by behavioral tests and histological examination of their hippocampal tissues. Mouse hippocampal neurons were extracted for in vitro studies. A gene set enrichment analysis was performed to analyze the signaling pathways involved, and the upstream factors influencing TGIF2 expression were explored in the ENCODE database and validated by ChIP-qPCR assays. RESULTS TGIF2 was poorly expressed in autistic patients in the GSE36315 dataset as well as in the temporal cortex tissues of autistic mice. Adenovirus-mediated overexpression of TGIF2 suppressed autism-like symptoms and neuronal apoptosis in autistic mice. TGIF2 activated the Wnt/β-catenin signaling pathway. TGIF2 could be regulated by monomethylation of histone H3 Lys4 (H3K4me1). The histone demethylase LSD1 was highly expressed in the tissues of autistic mice and bound to TGIF2 promoter, which was possibly responsible for TGIF2 downregulation. CONCLUSION This research suggests that the downregulation of TGIF2, possibly regulated by LSD1/H3K4me1, is correlated with neuronal apoptosis and development of autism in mice through the inactivation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jing Lei
- Department of the Ninth Pediatrics, Hunan Provincial People's Hospital (the First-Affiliated Hospital of Hunan Normal University), Changsha, P. R. China
| | - Yijue Deng
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Songdong Ma
- Hunan Provincial Key Laboratory of Pediatric Respirology, Hunan Provincial People's Hospital (the First-Affiliated Hospital of Hunan Normal University), Changsha, P. R. China
| |
Collapse
|
12
|
Shaw PAG, Panda SK, Stanca A, Luyten W. Optimization of a locomotion-based zebrafish seizure model. J Neurosci Methods 2022; 375:109594. [PMID: 35421798 DOI: 10.1016/j.jneumeth.2022.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Locomotor assays in zebrafish have emerged as a screening test in early drug discovery for antiseizure compounds. However, parameters differ considerably between published studies, which may explain some discrepant results with (candidate) antiseizure medications. NEW METHOD We optimized a locomotor-based seizure assay in zebrafish with pentylenetetrazol (PTZ) as the pharmacological proconvulsant to generate a therapeutic window in which proconvulsant-treated zebrafish larvae could be discriminated from a non-treated control. To generate a reliable control, exposure time and concentration of valproate (VPA, anticonvulsant) was optimized. RESULTS Wells with one or three larvae show a similar PTZ dose-dependent increase in locomotion with less variability in motility for the latter. Zebrafish immersed in 10 mM PTZ showed a significant increase in movement with a sustained effect, without any indication of toxicity. Animals treated with 3 mM VPA showed the strongest reduction of PTZ-induced movement without toxicity. The decrease in PTZ-induced locomotion was greater after 18 h versus 2 h. COMPARISON WITH EXISTING METHOD(S) For the larval zebrafish PTZ-induced seizure model, varying experimental parameters have been reported in literature. Our results show that PTZ is often used at toxic concentrations, and we provide instead reliable conditions to quantify convulsant behaviour using an infrared-beam motility assay. CONCLUSIONS We recommend using three zebrafish larvae per well to quantify locomotion in 96-multiwell plates. Larvae should preferably be exposed to 10 mM PTZ for 1 h, consisting of 30 min acclimation and 30 min subsequent recording. As positive control for anticonvulsant activity, we recommend exposure to 3 mM VPA for 18 h before administration of PTZ.
Collapse
Affiliation(s)
| | - Sujogya Kumar Panda
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| | - Alexandru Stanca
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Walter Luyten
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Ferreira MKA, da Silva AW, Dos Santos Moura AL, Sales KVB, Marinho EM, do Nascimento Martins Cardoso J, Marinho MM, Bandeira PN, Magalhães FEA, Marinho ES, de Menezes JESA, Dos Santos HS. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav 2021; 117:107881. [PMID: 33711684 DOI: 10.1016/j.yebeh.2021.107881] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 02/20/2021] [Indexed: 01/07/2023]
Abstract
In the treatment of anxiety and seizures, drugs of the benzodiazepine (BZD) class are used, which act on the Central Nervous System (CNS) through the neurotransmitter gamma-aminobutyric acid (GABA). Flavonoids modulate GABAA receptors. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of synthetic chalcones and their mechanisms of action via the GABAergic system, using adult zebrafish (ZFa). The animals were treated with chalcones (4.0 or 20 or 40 mg/kg; 20 µL; i.p) and submitted to the open field and 96 h toxicity test. Chalcones that cause locomotor alteration were evaluated in the light and dark anxiolytic test. The same doses of chalcones were evaluated in the anticonvulsant test. The lowest effective dose was chosen to assess the possible involvement in the GABAA receptor by blocking the flumazenil (fmz) antagonist. No chalcone was toxic and altered ZFa's locomotion. All chalcones had anxiolytic and anticonvulsant effects, mainly chalcones 1, where all doses showed effects in both tests. These effects were blocked by Fmz (antagonist GABAA), where it shows evidence of the performance of these activities of the GABA system. Therefore, this study demonstrated in relation to structure-activity, that the position of the substituents is important in the intensity of activities and that the absence of toxicity and the action of these compounds in the CNS, shows the pharmacological potential of these molecules, and, therefore, the insights are designed for the development of new drugs.
Collapse
Affiliation(s)
| | | | - Atilano Lucas Dos Santos Moura
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil
| | - Ketelly Vanessa Barros Sales
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Federal University of Ceará, Department of Analytical Chemistry and Physical Chemistry, Group of Theoretical Chemistry, Fortaleza, Ceará, Brazil
| | | | - Márcia Machado Marinho
- State University of Ceará, Iguatu Faculty of Education, Science and Letters, Ceará, Brazil
| | - Paulo Nogueira Bandeira
- Center for Exact Sciences and Technology, Vale do Acaraú State University, Sobral, Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- State University of Ceará, Department of Chemistry, Laboratory of Natural Products Bioprospecting and Biotechnology, Tauá, Ceará, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Department of Chemistry, Group of Theoretical Chemistry And Electrochemistry, Limoeiro do Norte, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil; Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil; Center for Exact Sciences and Technology, Vale do Acaraú State University, Sobral, Ceará, Brazil.
| |
Collapse
|
14
|
Anticonvulsant effect of pterostilbene and its influence on the anxiety- and depression-like behavior in the pentetrazol-kindled mice: behavioral, biochemical, and molecular studies. Psychopharmacology (Berl) 2021; 238:3167-3181. [PMID: 34333674 PMCID: PMC8605980 DOI: 10.1007/s00213-021-05933-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE Pterostilbene is the 3,5-dimethoxy derivative of resveratrol with numerous beneficial effects including neuroprotective properties. Experimental studies revealed its anticonvulsant action in the acute seizure tests. OBJECTIVES The purpose of the present study was to evaluate the effect of pterostilbene in the pentetrazol (PTZ)-induced kindling model of epilepsy in mice as well as to assess some possible mechanisms of its anticonvulsant action in this model. METHODS Mice were repeatedly treated with pterostilbene (50-200 mg/kg) and its effect on the development of seizure activity in the PTZ kindling was estimated. Influence of pterostilbene on the locomotor activity and anxiety- and depression-like behavior in the PTZ-kindled mice was also assessed. To understand the possible mechanisms of anticonvulsant activity of pterostilbene, γ-aminobutyric acid (GABA) and glutamate concentrations in the prefrontal cortex and hippocampus of the PTZ-kindled mice were measured using LC-MS/MS method. Moreover, mRNA expression of BDNF, TNF-α, IL-1β, IL-6, GABRA1A, and GRIN2B was determined by RT-qPCR technique. RESULTS We found that pterostilbene at a dose of 200 mg/kg considerably reduced seizure activity but did not influence the locomotor activity and depression- and anxiety-like behavior in the PTZ-kindled mice. In the prefrontal cortex and hippocampus, pterostilbene reversed the kindling-induced decrease of GABA concentration. Neither in the prefrontal cortex nor hippocampus pterostilbene affected mRNA expression of IL-1β, IL-6, GABRA1A, and GRIN2B augmented by PTZ kindling. Pterostilbene at a dose of 100 mg/kg significantly decreased BDNF and TNF-α mRNA expression in the hippocampus of the PTZ-kindled mice. CONCLUSIONS Although further studies are necessary to understand the mechanism of anticonvulsant properties of pterostilbene, our findings suggest that it might be considered a candidate for a new antiseizure drug.
Collapse
|
15
|
Tapanyiğit O, Demirkol O, Güler E, Erşatır M, Çam ME, Giray ES. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
The Search for New Anticonvulsants in a Group of (2,5-Dioxopyrrolidin-1-yl)(phenyl)Acetamides with Hybrid Structure-Synthesis and In Vivo/In Vitro Studies. Int J Mol Sci 2020; 21:ijms21228780. [PMID: 33233618 PMCID: PMC7699745 DOI: 10.3390/ijms21228780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Epilepsy belongs to the most common and debilitating neurological disorders with multifactorial pathophysiology and a high level of drug resistance. Therefore, with the aim of searching for new, more effective, and/or safer therapeutics, we discovered a focused series of original hybrid pyrrolidine-2,5-dione derivatives with potent anticonvulsant properties. We applied an optimized coupling reaction yielding several hybrid compounds that showed broad-spectrum activity in widely accepted animal seizure models, namely, the maximal electroshock (MES) test and the psychomotor 6 Hz (32 mA) seizure model in mice. The most potent anticonvulsant activity and favorable safety profile was demonstrated for compound 30 (median effective dose (ED50) MES = 45.6 mg/kg, ED50 6 Hz (32 mA) = 39.5 mg/kg, median toxic dose (TD50) (rotarod test) = 162.4 mg/kg). Anticonvulsant drugs often show activity in pain models, and compound 30 was also proven effective in the formalin test of tonic pain, the capsaicin-induced pain model, and the oxaliplatin (OXPT)-induced neuropathic pain model in mice. Our studies showed that the most plausible mechanism of action of 30 involves inhibition of calcium currents mediated by Cav1.2 (L-type) channels. Importantly, 30 revealed high metabolic stability on human liver microsomes, negligible hepatotoxicity, and relatively weak inhibition of CYP3A4, CYP2D6, and CYP2C9 isoforms of cytochrome P450, compared to reference compounds. The promising in vivo activity profile and drug-like properties of compound 30 make it an interesting candidate for further preclinical development.
Collapse
|
17
|
Kamiński K, Mogilski S, Abram M, Rapacz A, Latacz G, Szulczyk B, Walczak M, Kuś K, Matyjaszczyk K, Kamiński RM. KA-104, a new multitargeted anticonvulsant with potent antinociceptive activity in preclinical models. Epilepsia 2020; 61:2119-2128. [PMID: 32929733 DOI: 10.1111/epi.16669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The main objective of the present work was to assess the utility of KA-104 as potential therapy for drug-resistant seizures and neuropathic pain, and to characterize its druglike properties in a series of absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) studies. We also aimed to establish its mechanism of action in electrophysiological studies. METHODS The activity of KA-104 against drug-resistant seizures was tested in the mouse 6-Hz (44-mA) model, whereas the antinociceptive activity was assessed with the capsaicin- and oxaliplatin-induced pain models in mice. The patch-clamp technique was used to study the influence of KA-104 on fast voltage-gated sodium currents in rat prefrontal cortex pyramidal neurons. The pharmacokinetic profile was determined after intraperitoneal (ip) injection in mice. The in vitro ADME-Tox properties were studied by applying routine testing procedures. RESULTS KA-104 was effective in the 6-Hz (44-mA) model (median effective dose [ED50 ] = 73.2 mg/kg) and revealed high efficacy in capsaicin-induced neurogenic pain as well as in oxaliplatin-induced neuropathic pain in mice. Patch-clamp technique showed that KA-104 reversibly inhibits voltage-gated sodium currents. KA-104 was rapidly absorbed after the ip injection and showed relatively good penetration through the blood-brain barrier. This molecule was also characterized by high passive permeability, moderate influence on CYP2C9, and negligible hepatotoxicity on HepG2 cells. SIGNIFICANCE The results reported herein indicate that KA-104 is a new wide-spectrum multitargeted anticonvulsant with favorable in vitro ADME-Tox properties. Importantly, this compound may also prove to become an interesting and hopefully more effective therapeutic option for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Maria Walczak
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland.,Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Cracow, Poland
| | - Kamil Kuś
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland.,Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Cracow, Poland
| | - Karolina Matyjaszczyk
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland.,Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Cracow, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
18
|
Gawel K, Kukula-Koch W, Nieoczym D, Stepnik K, van der Ent W, Banono NS, Tarabasz D, Turski WA, Esguerra CV. The Influence of Palmatine Isolated from Berberis sibirica Radix on Pentylenetetrazole-Induced Seizures in Zebrafish. Cells 2020; 9:cells9051233. [PMID: 32429356 PMCID: PMC7290958 DOI: 10.3390/cells9051233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Palmatine (PALM) and berberine (BERB) are widely identified isoquinoline alkaloids among the representatives of the Berberidaceae botanical family. The antiseizure activity of BERB was shown previously in experimental epilepsy models. We assessed the effect of PALM in a pentylenetetrazole (PTZ)-induced seizure assay in zebrafish, with BERB as an active reference compound. Both alkaloids were isolated from the methanolic root extract of Berberis sibirica by counter-current chromatography, and their ability to cross the blood–brain barrier was determined via quantitative structure–activity relationship assay. PALM exerted antiseizure activity, as confirmed by electroencephalographic analysis, and decreased c-fos and bdnf levels in PTZ-treated larvae. In a behavioral assay, PALM dose-dependently decreased PTZ-induced hyperlocomotion. The combination of PALM and BERB in ED16 doses revealed hyperadditive activity towards PTZ-induced hyperlocomotion. Notably, we have indicated that both alkaloids may exert their anticonvulsant activity through different mechanisms of action. Additionally, the combination of both alkaloids in a 1:2.17 ratio (PALM: BERB) mimicked the activity of the pure extract, which indicates that these two active compounds are responsible for its anticonvulsive activity. In conclusion, our study reveals for the first time the anticonvulsant activity of PALM and suggests the combination of PALM and BERB may have higher therapeutic value than separate usage of these compounds.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6454
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland;
| | - Katarzyna Stepnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/243, 20-031 Lublin, Poland;
| | - Wietske van der Ent
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Dominik Tarabasz
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| |
Collapse
|