1
|
Li R, Huang X, Shen L, Zhang T, Liu N, Hou X, Wong G. Novel C. elegans models of Lewy body disease reveal pathological protein interactions and widespread miRNA dysregulation. Cell Mol Life Sci 2024; 81:377. [PMID: 39212733 PMCID: PMC11364739 DOI: 10.1007/s00018-024-05383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Lewy body diseases (LBD) comprise a group of complex neurodegenerative conditions originating from accumulation of misfolded alpha-synuclein (α-syn) in the form of Lewy bodies. LBD pathologies are characterized by α-syn deposition in association with other proteins such as Amyloid β (Aβ), Tau, and TAR-DNA-binding protein. To investigate the complex interactions of these proteins, we constructed 2 novel transgenic overexpressing (OE) C. elegans strains (α-synA53T;Taupro-agg (OE) and α-synA53T;Aβ1-42;Taupro-agg (OE)) and compared them with previously established Parkinson's, Alzheimer's, and Lewy Body Dementia disease models. The LBD models presented here demonstrate impairments including uncoordinated movement, egg-laying deficits, altered serotonergic and cholinergic signaling, memory and posture deficits, as well as dopaminergic neuron damage and loss. Expression levels of total and prone to aggregation α-syn protein were increased in α-synA53T;Aβ1-42 but decreased in α-synA53T;Taupro-agg animals when compared to α-synA53T animals suggesting protein interactions. These alterations were also observed at the mRNA level suggesting a pre-transcriptional mechanism. miRNA-seq revealed that cel-miR-1018 was upregulated in LBD models α-synA53T, α-synA53T;Aβ1-42, and α-synA53T;Taupro-agg compared with WT. cel-miR-58c was upregulated in α-synA53T;Taupro-agg but downregulated in α-synA53T and α-synA53T;Aβ1-42 compared with WT. cel-miR-41-3p and cel-miR-355-5p were significantly downregulated in 3 LBD models. Our results obtained in a model organism provide evidence of interactions between different pathological proteins and alterations in specific miRNAs that may further exacerbate or ameliorate LBD pathology.
Collapse
Affiliation(s)
- Rongzhen Li
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
| | - Xiaobing Huang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Linjing Shen
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tianjiao Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Ning Liu
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
| | - Xiangqing Hou
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Garry Wong
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China.
| |
Collapse
|
2
|
Vaitkienė P, Pranckevičienė A, Radžiūnas A, Mišeikaitė A, Miniotaitė G, Belickienė V, Laucius O, Deltuva V. Association of Serum Extracellular Vesicle miRNAs with Cognitive Functioning and Quality of Life in Parkinson's Disease. Biomolecules 2024; 14:1000. [PMID: 39199388 PMCID: PMC11352584 DOI: 10.3390/biom14081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The identification of mechanisms associated with Parkinson disease (PD) development in cognitive functioning would be of great usefulness to clarify PD pathogenesis and to develop preventive and therapeutic strategies. In this study, blood serum extracellular vesicle (EV) levels of the candidate microRNAs (small noncoding RNAs that play a role in gene expression regulation):,miR-7, miR-21, miR-153, miR-155, miR-200a and miR-214, have been investigated for association with PD in a group of 93 patients with cognitive parameters, PD symptoms, affected quality of life and some clinical characteristics. MiRNA was extracted from patients' blood serum EVs, transcribed into cDNA and their expression was evaluated using RT-PCR. The miR-153 and miR-200a showed the most plausible correlations with cognitive functioning parameters such as general intellectual functioning, psychomotor speed, mental flexibility, and nonverbal executive functions. Moreover, lower levels of miR-153 were associated with attention span, working memory and psychomotor speed with learning. Increased levels of miR-200a, miR-7, miR-214, and miR-155 were also linked with neurological functioning, such as bradykinesia, tremor, balance and others. Despite the fact that due to small sample size, our results should be considered as preliminary, our study suggests that miRNA expression in EVs could be associated with symptom severity, cognitive impairment and quality of life in PD.
Collapse
Affiliation(s)
- Paulina Vaitkienė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| | - Aistė Pranckevičienė
- Health Psychology Department, Faculty of Public Health, Medical Academy, Lithuania University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania;
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| | - Andrius Radžiūnas
- Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Kauno Klinikos, Eiveniu Str. 2, LT-50009 Kaunas, Lithuania
| | - Augustina Mišeikaitė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| | - Giedrė Miniotaitė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Violeta Belickienė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Ovidijus Laucius
- Neurology Department, Lithuanian University of Health Sciences, Kauno Klinikos, Eiveniu Str. 2, LT-50009 Kaunas, Lithuania
| | - Vytenis Deltuva
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| |
Collapse
|
3
|
Esteves M, Cristóvão AC, Vale A, Machado-Pereira M, Ferreira R, Bernardino L. MicroRNA-124-3p Modulates Alpha-Synuclein Expression Levels in a Paraquat-Induced in vivo Model for Parkinson's Disease. Neurochem Res 2024; 49:1677-1686. [PMID: 38451434 PMCID: PMC11144150 DOI: 10.1007/s11064-024-04130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and the most common movement disorder. Although PD etiology is not fully understood, alpha (α)-synuclein is a key protein involved in PD pathology. MicroRNAs (miRNA), small gene regulatory RNAs that control gene expression, have been identified as biomarkers and potential therapeutic targets for brain diseases, including PD. In particular, miR-124 is downregulated in the plasma and brain samples of PD patients. Recently we showed that the brain delivery of miR-124 counteracts 6-hydroxydopamine-induced motor deficits. However, its role in α-synuclein pathology has never been addressed. Here we used paraquat (PQ)-induced rat PD model to evaluate the role of miR-124-3p in α-synuclein accumulation and dopaminergic neuroprotection. Our results showed that an intranigral administration of miR-124-3p reduced the expression and aggregation of α-synuclein in the substantia nigra (SN) of rats exposed to PQ. NADPH oxidases (NOX), responsible for reactive oxygen species generation, have been considered major players in the development of α-synuclein pathology. Accordingly, miR-124-3p decreased protein expression levels of NOX1 and its activator, small GTPase Rac1, in the SN of PQ-lesioned rats. Moreover, miR-124-3p was able to counteract the reduced levels of pituitary homeobox 3 (PITX3), a protein required for the dopaminergic phenotype, induced by PQ in the SN. This is the first study showing that miR-124-3p decreases PQ-induced α-synuclein levels and the associated NOX1/Rac1 signaling pathway, and impacts PITX3 protein levels, supporting the potential of miR-124-3p as a disease-modifying agent for PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Marta Esteves
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Clara Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSov, UBImedical, University of Beira Interior, Covilhã, Portugal
| | - Ana Vale
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marta Machado-Pereira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Bernardino
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
- Brain Repair Group, CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal.
| |
Collapse
|
4
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|
5
|
Titze-de-Almeida SS, Titze-de-Almeida R. Progress in circRNA-Targeted Therapy in Experimental Parkinson's Disease. Pharmaceutics 2023; 15:2035. [PMID: 37631249 PMCID: PMC10459713 DOI: 10.3390/pharmaceutics15082035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer's and Parkinson's disease (PD)-the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and circSLC8A1 are circRNAs that have been related to the neurodegenerative process of PD. Gain-of-function and loss-of-function studies on circRNAs have shed light on their roles in the pathobiology of various diseases. Gain-of-function approaches typically employ viral or non-viral vectors that hyperexpress RNA sequences capable of circularizing to form the specific circRNA under investigation. In contrast, loss-of-function studies utilize CRISPR/Cas systems, antisense oligonucleotides (ASOs), or RNAi techniques to knock down the target circRNA. The role of aberrantly expressed circRNAs in brain pathology has raised a critical question: could circRNAs serve as viable targets for neuroprotective treatments? Translating any oligonucleotide-based therapy, including those targeting circRNAs, involves developing adequate brain delivery systems, minimizing off-target effects, and addressing the high costs of treatment. Nonetheless, RNAi-based FDA-approved drugs have entered the market, and circRNAs have attracted significant attention and investment from major pharmaceutical companies. Spanning from bench to bedside, circRNAs present a vast opportunity in biotechnology for oligonucleotide-based therapies designed to slow or even halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
6
|
Chen C, Guo M, Zhao X, Zhao J, Chen L, He Z, Xu L, Zha Y. MicroRNA-7: A New Intervention Target for Inflammation and Related Diseases. Biomolecules 2023; 13:1185. [PMID: 37627250 PMCID: PMC10452300 DOI: 10.3390/biom13081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA that can regulate physiological and pathological processes through post-transcriptional regulatory gene expression. As an important member of the miRNAs family, microRNA-7 (miR-7) was first discovered in 2001 to play an important regulatory role in tissue and organ development. Studies have shown that miR-7 participates in various tissue and organ development processes, tumorigenesis, aging, and other processes by regulating different target molecules. Notably, a series of recent studies have determined that miR-7 plays a key regulatory role in the occurrence of inflammation and related diseases. In particular, miR-7 can affect the immune response of the body by influencing T cell activation, macrophage function, dendritic cell (DC) maturation, inflammatory body activation, and other mechanisms, which has important potential application value in the intervention of related diseases. This article reviews the current regulatory role of miR-7 in inflammation and related diseases, including viral infection, autoimmune hepatitis, inflammatory bowel disease, and encephalitis. It expounds on the molecular mechanism by which miR-7 regulates the occurrence of inflammatory diseases. Finally, the existing problems and future development directions of miR-7-based intervention on inflammation and related diseases are discussed to provide new references and help strengthen the understanding of the pathogenesis of inflammation and related diseases, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Chao Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Longqing Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Yan Zha
- School of Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Liang Y, Gu M, Liang X, Zhou Y, Yang Q, Wang Z, Yao W, Gao X, Chen S. von Hippel-Lindau-targeting microRNA-143-3p attenuates mitochondrial abnormality via AMPK/PGC-1α axis in Parkinson's disease. Exp Cell Res 2023:113684. [PMID: 37307940 DOI: 10.1016/j.yexcr.2023.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by selective loss of dopaminergic neurons. We previously found that inhibition of von Hippel-Lindau (VHL) can alleviate dopaminergic neuron degeneration in PD models via regulation of mitochondrial homeostasis, however, the disease-related alterations of VHL and the regulatory mechanisms of VHL level in PD need to be further investigated. In this study, we found that the levels of VHL were markedly increased in multiple cell models of PD and identified microRNA-143-3p (miR-143-3p) as a promising candidate for regulating VHL expression involved in PD. MiR-143-3p directly bound to the 3'untranslated region of human VHL mRNA and inhibited its translation, and exerted neuroprotective effects by improving cell viability, apoptosis and tyrosine hydroxylase abnormality. Furthermore, we demonstrated that miR-143-3p exerted neuroprotection by attenuating mitochondrial abnormality via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) axis, and AMPK inhibitor abolished the beneficial effects of miR-143-3p on the cell model of PD. Therefore, we identify the dysregulated VHL and miR-143-3p in PD, and propose the therapeutic potential of miR-143-3p to alleviate PD by improving mitochondrial homeostasis via AMPK/PGC-1α axis.
Collapse
Affiliation(s)
- Yucui Liang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Mengyu Gu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiao Liang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yueqian Zhou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qianhua Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhiwen Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
8
|
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13:986668. [PMID: 36339626 PMCID: PMC9632735 DOI: 10.3389/fphar.2022.986668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.
Collapse
Affiliation(s)
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
9
|
Abstract
Parkinson’s disease (PD) is a complex, chronic, and progressive neurodegenerative disease that is characterized by irreversible dopaminergic neuronal loss in the substantia nigra. Alpha-synuclein is normally a synaptic protein that plays a key role in PD due to pathological accumulation as oligomers or fibrils. Clustered alpha-synuclein binds to the Toll-like receptors and activates the microglia, which initiates a process that continues with pro-inflammatory cytokine production and secretion. Pro-inflammatory cytokine overproduction and secretion induce cell death and accelerate PD progression. Microglia are found in a resting state in physiological conditions. Microglia became activated by stimulating Toll-like receptors on it under pathological conditions, such as alpha-synuclein aggregation, environmental toxins, or oxidative stress. The interaction between Toll-like receptors and its downstream pathway triggers an activation series, leads to nuclear factor-kappa B activation, initiates the inflammasome formation, and increases cytokine levels. This consecutive inflammatory process leads to dopaminergic cell damage and cell death. Microglia become overactive in response to chronic inflammation, which is observed in PD and causes excessive cytotoxic factor production, such as reactive oxidase, nitric oxide, and tumor necrosis factor-alpha. This inflammatory process contributes to the exacerbation of pathology by triggering neuronal damage or death. Current treatments, such as dopaminergic agonists, anticholinergics, or monoamine oxidase inhibitors alleviate PD symptoms, but they can not stop the disease progression. Finding a radical treatment option or stopping the progression is essential when considering that PD is the second most reported neurodegenerative disorder. Many cytokines are released during inflammation, and they can start the phagocytic process, which caused the degradation of infected cells along with healthy ones. Therefore, targeting the pathological mechanisms, such as microglial activation, mitochondrial dysfunction, and oxidative stress, that should be involved in the treatment program is important. Neuroinflammation is one of the key factors involved in PD pathogenesis as well as alpha-synuclein accumulation, synaptic dysfunction, or dopaminergic neuronal loss, especially in the substantia nigra. Therefore, evaluating the therapeutic efficiency of the mechanisms is important, such as microglial activation and nuclear factor-kappa B pathway or inflammasome formation inhibition, and cytokine release interruption against neuroinflammation may create new treatment possibilities for PD. This study examined the pathological relation between PD and neuroinflammation, and targeting neuroinflammation as an opportunity for PD treatments, such as Toll-like receptor antagonists, NOD-like receptor family pyrin domain containing-3 inflammasome inhibitors, cytokine inhibitors, peroxisome proliferator-activated receptor-γ agonists, reactive oxygen species inhibitors, and nonsteroidal anti-inflammatory drugs.
Collapse
|
10
|
Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial Dysfunction in Parkinson’s Disease: From Mechanistic Insights to Therapy. Front Aging Neurosci 2022; 14:885500. [PMID: 35795234 PMCID: PMC9250984 DOI: 10.3389/fnagi.2022.885500] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. There are currently no cures or preventative treatments for PD. Emerging evidence indicates that mitochondrial dysfunction is closely associated with pathogenesis of sporadic and familial PD. Because dopaminergic neurons have high energy demand, cells affected by PD exhibit mitochondrial dysfunction that promotes the disease-defining the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The mitochondrion has a particularly important role as the cellular “powerhouse” of dopaminergic neurons. Therefore, mitochondria have become a promising therapeutic target for PD treatments. This review aims to describe mitochondrial dysfunction in the pathology of PD, outline the genes associated with familial PD and the factors related to sporadic PD, summarize current knowledge on mitochondrial quality control in PD, and give an overview of therapeutic strategies for targeting mitochondria in neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
11
|
Upcott M, Chaprov KD, Buchman VL. Toward a Disease-Modifying Therapy of Alpha-Synucleinopathies: New Molecules and New Approaches Came into the Limelight. Molecules 2021; 26:molecules26237351. [PMID: 34885933 PMCID: PMC8658846 DOI: 10.3390/molecules26237351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
The accumulation of the various products of alpha-synuclein aggregation has been associated with the etiology and pathogenesis of several neurodegenerative conditions, including both familial and sporadic forms of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). It is now well established that the aggregation and spread of alpha-synuclein aggregation pathology activate numerous pathogenic mechanisms that contribute to neurodegeneration and, ultimately, to disease progression. Therefore, the development of a safe and effective disease-modifying therapy that limits or prevents the accumulation of the toxic intermediate products of alpha-synuclein aggregation and the spread of alpha-synuclein aggregation pathology could provide significant positive clinical outcomes in PD/DLB cohorts. It has been suggested that this goal can be achieved by reducing the intracellular and/or extracellular levels of monomeric and already aggregated alpha-synuclein. The principal aim of this review is to critically evaluate the potential of therapeutic strategies that target the post-transcriptional steps of alpha-synuclein production and immunotherapy-based approaches to alpha-synuclein degradation in PD/DLB patients. Strategies aimed at the downregulation of alpha-synuclein production are at an early preclinical stage of drug development and, although they have shown promise in animal models of alpha-synuclein aggregation, many limitations need to be resolved before in-human clinical trials can be seriously considered. In contrast, many strategies aimed at the degradation of alpha-synuclein using immunotherapeutic approaches are at a more advanced stage of development, with some in-human Phase II clinical trials currently in progress. Translational barriers for both strategies include the limitations of alpha-synuclein aggregation models, poor understanding of the therapeutic window for the alpha-synuclein knockdown, and variability in alpha-synuclein pathology across patient cohorts. Overcoming such barriers should be the main focus of further studies. However, it is already clear that these strategies do have the potential to achieve a disease-modifying effect in PD and DLB.
Collapse
Affiliation(s)
- Matthew Upcott
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Kirill D. Chaprov
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovk, 142432 Moscow, Russia;
- Belgorod State National Research University, 85 Pobedy Street, 308015 Belgorod, Russia
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovk, 142432 Moscow, Russia;
- Belgorod State National Research University, 85 Pobedy Street, 308015 Belgorod, Russia
- Correspondence:
| |
Collapse
|