1
|
Albertini C, Petralla S, Massenzio F, Monti B, Rizzardi N, Bergamini C, Uliassi E, Borges F, Chavarria D, Fricker G, Goettert M, Kronenberger T, Gehringer M, Laufer S, Bolognesi ML. Targeting Lewy body dementia with neflamapimod-rasagiline hybrids. Arch Pharm (Weinheim) 2024; 357:e2300525. [PMID: 38412454 DOI: 10.1002/ardp.202300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Lewy body dementia (LBD) represents the second most common neurodegenerative dementia but is a quite underexplored therapeutic area. Nepflamapimod (1) is a brain-penetrant selective inhibitor of the alpha isoform of the mitogen-activated serine/threonine protein kinase (MAPK) p38α, recently repurposed for LBD due to its remarkable antineuroinflammatory properties. Neuroprotective propargylamines are another class of molecules with a therapeutical potential against LBD. Herein, we sought to combine the antineuroinflammatory core of 1 and the neuroprotective propargylamine moiety into a single molecule. Particularly, we inserted a propargylamine moiety in position 4 of the 2,6-dichlorophenyl ring of 1, generating neflamapimod-propargylamine hybrids 3 and 4. These hybrids were evaluated using several cell models, aiming to recapitulate the complexity of LBD pathology through different molecular mechanisms. The N-methyl-N-propargyl derivative 4 showed a nanomolar p38α-MAPK inhibitory activity (IC50 = 98.7 nM), which is only 2.6-fold lower compared to that of the parent compound 1, while displaying no hepato- and neurotoxicity up to 25 μM concentration. It also retained a similar immunomodulatory profile against the N9 microglial cell line. Gratifyingly, at 5 μM concentration, 4 demonstrated a neuroprotective effect against dexamethasone-induced reactive oxygen species production in neuronal cells that was higher than that of 1.
Collapse
Affiliation(s)
- Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sabrina Petralla
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Marcia Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Matthias Gehringer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Lau K, Porschen LT, Richter F, Gericke B. Microvascular blood-brain barrier alterations in isolated brain capillaries of mice over-expressing alpha-synuclein (Thy1-aSyn line 61). Neurobiol Dis 2023; 187:106298. [PMID: 37716515 DOI: 10.1016/j.nbd.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) is suggested to play a critical role in the pathological mechanisms of Parkinson's disease (PD). PD-related pathology such as alpha-synuclein accumulation and inflammatory processes potentially affect the integrity of the BBB early in disease progression, which in turn may alter the crosstalk of the central and peripheral immune response. Importantly, BBB dysfunction could also affect drug response in PD. Here we analyzed microvascular changes in isolated brain capillaries and brain sections on a cellular and molecular level during disease progression in an established PD mouse model that overexpresses human wild-type alpha-synuclein (Thy1-aSyn, line 61). BBB alterations observed in Thy1-aSyn mice included reduced vessel density, reduced aquaporin-4 coverage, reduced P-glycoprotein expression, increased low-density lipoprotein receptor-related protein 1 expression, increased pS129-alpha-synuclein deposition, and increased adhesion protein and matrix metalloprotease expression together with alterations in tight junction proteins. Striatal capillaries presented with more dysregulated BBB integrity markers compared to cortical capillaries. These alterations of BBB integrity lead, however, not to an overt IgG leakage in brain parenchyma. Our data reveals intricate alterations in key proteins of BBB function together with histological evidence for altered structure of the brain vasculature. Thy1-aSyn mice represent a useful model to investigate therapeutic targeting of BBB alterations in synucleinopathies.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Lisa T Porschen
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
3
|
Richter F, Stanojlovic M, Käufer C, Gericke B, Feja M. A Mouse Model to Test Novel Therapeutics for Parkinson's Disease: an Update on the Thy1-aSyn ("line 61") Mice. Neurotherapeutics 2023; 20:97-116. [PMID: 36715870 PMCID: PMC10119371 DOI: 10.1007/s13311-022-01338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/31/2023] Open
Abstract
Development of neuroprotective therapeutics for Parkinson's disease (PD) is facing a lack of translation from pre-clinical to clinical trials. One strategy for improvement is to increase predictive validity of pre-clinical studies by using extensively characterized animal models with a comprehensive set of validated pharmacodynamic readouts. Mice over-expressing full-length, human, wild-type alpha-synuclein under the Thy-1 promoter (Thy1-aSyn line 61) reproduce key features of sporadic PD, such as progressive loss of striatal dopamine, alpha-synuclein pathology, deficits in motor and non-motor functions, and elevation of inflammatory markers. Extensive work with this model by multiple laboratories over the past decade further increased confidence in its robustness and validity, especially for analyzing pathomechanisms of alpha-synuclein pathology and down-stream pathways, and for pre-clinical drug testing. Interestingly, while postnatal transgene expression is widespread in central and peripheral neurons, the extent and progression of down-stream pathology differs between brain regions, thereby replicating the characteristic selective vulnerability of neurodegenerative diseases. In-depth characterization of these readouts in conjunction with behavioral deficits has led to more informative endpoints for pre-clinical trials. Each drug tested in Thy1-aSyn line 61 enhances knowledge on how molecular targets, pathology, and functional behavioral readouts are interconnected, thereby further optimizing the platform towards predictive validity for clinical trials. Here, we present the current state of the art using Thy1-aSyn line 61 for drug target discovery, validation, and pre-clinical testing.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience Hannover, Hannover, Germany.
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
4
|
DeKosky ST, Duara R. The Broad Range of Research in Alzheimer's Disease and Related Dementias. Neurotherapeutics 2022; 19:1-7. [PMID: 35562636 PMCID: PMC9130348 DOI: 10.1007/s13311-022-01245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Steven T. DeKosky
- McKnight Brain Institute, 1Florida Alzheimer’s Disease Center and University of Florida College of Medicine, Gainesville, FL 32610 USA
- Dept of Neurology, 1Florida Alzheimer’s Disease Research Center, University of Florida College of Medicine, Gainesville, FL USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Alton Rd, Suite 650, Miami Beach, FL 33140 USA
- Dept of Neurology, 1Florida Alzheimer’s Disease Research Center, University of Florida College of Medicine, Gainesville, FL USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL USA
| |
Collapse
|