1
|
Wu W, Hou C, Wu W, Shen H, Zeng Y, Chen L, Liao Y, Zhu H, Tian Y, Peng B, Chen WX, Li X. Cerebrospinal fluid neurofilament light chain levels in children with acquired demyelinating syndrome. Front Pediatr 2024; 12:1467020. [PMID: 39564383 PMCID: PMC11573574 DOI: 10.3389/fped.2024.1467020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Objective To study the cerebrospinal fluid (CSF) neurofilament light chain (NfL) in pediatric acquired demyelinating syndrome (ADS) and its association with factors of laboratory and imaging results. Methods We analyzed clinical data from children with ADS collected from May 2020 to January 2021 at the Department of Neurology of Guangzhou Women and Children's Medical Center. Enzyme-linked immunosorbent assays were used to detect the CSF NfL of patients. Results Thirty pediatric ADS patients (17 male, 13 female) were included in the study. The most frequent diagnosis was uncategorized ADS (36.7%, 11/30), followed by acute disseminating encephalomyelitis (ADEM) (23.3%, 7/30), myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD) (20.0%, 6/30), NMO (6.7%, 2/30), multiple sclerosis (MS) (6.7%, 2/30), and neuromyelitis optic spectrum disorders (NMOSD) (6.7%, 2/30). The median CSF NfL for the first time was 7,425.28 pg/ml (interquartile range, 1,273.51, >10,000 pg/ml). CSF NfL increase over normal value (<290.00 pg/ml for people younger than 30 years old) was seen in 98.7% of patients. Patients were divided into uncategorized ADS, ADEM, MOGAD, and MS/NMO/NMOSD groups, with no significant difference in CSF NfL between each group. The CSF NfL positively correlated with the immunoglobulin (Ig) G (ρ = 0.473) and IgE (ρ = 0.366). However, the CSF NfL did not correlate with CSF white blood count and CSF protein. Furthermore, there was no significant difference between patients with oligoclonal bands positive and without. The CSF NfL negatively correlated with interferon γ (ρ = -0.501), CD45 + CD3+ T (ρ = -0.466), CD45 + CD3 + CD4+ T (ρ = -0.466), and CD45 + CD3 + CD8+ T cells (ρ = -0.521). However, it did not correlate with CD45 + CD19+ B cells. CSF NfL in patients with cerebral white matter lesions in MRI was higher than in patients without. Moreover, the CSF NfL positively correlated with the number of brain MRI locations (ρ = 0.362). Nine patients underwent multiple detections of CSF NfL, and their CSF NfL for the last detection was not significantly different from the first. Conclusions The CSF NfL increases significantly in pediatric ADS, and it can be a biomarker of neuro-axonal injury and a good indication of the extent of lesions.
Collapse
Affiliation(s)
- Wenlin Wu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenxiao Wu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huiling Shen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiru Zeng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lianfeng Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinting Liao
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Zhu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingwei Peng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Iaffaldano P, Lucisano G, Guerra T, Paolicelli D, Portaccio E, Inglese M, Foschi M, Patti F, Granella F, Romano S, Cavalla P, De Luca G, Gallo P, Bellantonio P, Gallo A, Montepietra S, Di Sapio A, Vianello M, Quatrale R, Spitaleri D, Clerici R, Torri Clerici V, Cocco E, Brescia Morra V, Marfia GA, Boccia VD, Filippi M, Amato MP, Trojano M. A comparison of natalizumab and ocrelizumab on disease progression in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:2008-2015. [PMID: 38970214 PMCID: PMC11330227 DOI: 10.1002/acn3.52118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE No direct comparisons of the effect of natalizumab and ocrelizumab on progression independent of relapse activity (PIRA) and relapse-associated worsening (RAW) events are currently available. We aimed to compare the risk of achieving first 6 months confirmed PIRA and RAW events and irreversible Expanded Disability Status Scale (EDSS) 4.0 and 6.0 in a cohort of naïve patients treated with natalizumab or ocrelizumab from the Italian Multiple Sclerosis Register. METHODS Patients with a first visit within 1 year from onset, treated with natalizumab or ocrelizumab, and ≥3 visits were extracted. Pairwise propensity score-matched analyses were performed. Risk of reaching the first PIRA, RAW, and EDSS 4.0 and 6.0 events were estimated using multivariable Cox proportional hazards models. Kaplan-Meier curves were used to show cumulative probabilities of reaching outcomes. RESULTS In total, 770 subjects were included (natalizumab = 568; ocrelizumab = 212) and the propensity score-matching retrieved 195 pairs. No RAW events were found in natalizumab group and only 1 was reported in ocrelizumab group. A first PIRA event was reached by 23 natalizumab and 25 ocrelizumab exposed patients; 7 natalizumab- and 10 ocrelizumab-treated patients obtained an irreversible EDSS 4.0, while 13 natalizumab- and 15 ocrelizumab-treated patients reached an irreversible EDSS 6.0. No differences between the two groups were found in the risk (HR, 95%CI) of reaching a first PIRA (1.04, 0.59-1.84; p = 0.88) event, an irreversible EDSS 4.0 (1.23, 0.57-2.66; p = 0.60) and 6.0 (0.93, 0.32-2.68; p = 0.89). INTERPRETATION Both medications strongly suppress RAW events and, in the short term, the risk of achieving PIRA events, EDSS 4.0 and 6.0 milestones is not significantly different.
Collapse
Affiliation(s)
- Pietro Iaffaldano
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | - Giuseppe Lucisano
- CORESEARCH ‐ Center for Outcomes Research and Clinical EpidemiologyPescaraItaly
| | - Tommaso Guerra
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | - Damiano Paolicelli
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | | | - Matilde Inglese
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno ‐ Infantili (DINOGMI)Università di GenovaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center‐Neurology UnitS. Maria delle Croci Hospital of Ravenna, AUSL RomagnaRavenna48121Italy
| | - Francesco Patti
- Dipartimento di Scienze Mediche e Chirurgiche e Tecnologie Avanzate, GF Ingrassia, Sez. Neuroscienze, Centro Sclerosi MultiplaUniversità di CataniaCataniaItaly
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS)Sapienza University of RomeRomeItaly
| | - Paola Cavalla
- Multiple Sclerosis Center and 1 Neurology Unit, Department of Neurosciences and Mental HealthAOU Città della Salute e della Scienza di Torino via Cherasco 15Torino10126Italy
| | - Giovanna De Luca
- Centro Sclerosi MultiplaClinica Neurologica, Policlinico SS. AnnunziataChietiItaly
| | - Paolo Gallo
- Department of Neurosciences, Multiple Sclerosis Centre‐Veneto Region (CeSMuV)University Hospital of PaduaPaduaItaly
| | - Paolo Bellantonio
- Unit of Neurology and NeurorehabilitationIRCCS NeuromedPozzilliItaly
| | - Antonio Gallo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Sara Montepietra
- Neurology Unit, Neuromotor and Rehabilitation DepartmentAUSL‐IRCCS of Reggio EmiliaReggio EmiliaItaly
| | - Alessia Di Sapio
- Regional Referral MS Center, Neurological UnitUniv. Hospital San LuigiOrbassanoItaly
| | | | - Rocco Quatrale
- Ambulatorio Sclerosi Multipla ‐ Divisione di NeurologiaOspedale dell'AngeloMestreItaly
| | | | - Raffaella Clerici
- Centro ad Alta Specializzazione per la diagnosi e la cura della sclerosi multiplaOspedale Generale di zona ValduceComoItaly
| | | | - Eleonora Cocco
- Department of Medical Science and Public Health, Centro Sclerosi MultiplaUniversity of CagliariCagliariItaly
| | - Vincenzo Brescia Morra
- Department of Neuroscience (NSRO)Multiple Sclerosis Clinical Care and Research Center, Federico II UniversityNaplesItaly
| | | | - Vincenzo Daniele Boccia
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno ‐ Infantili (DINOGMI)Università di GenovaGenoaItaly
| | - Massimo Filippi
- Neurology Unit and MS CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | | | - Maria Trojano
- Department of Translational Biomedicines and NeurosciencesUniversity of Bari Aldo MoroBariItaly
| | | |
Collapse
|
3
|
Kızılay T, Akbayir E, Erol R, Demir AS, Özkan Yaşargün D, Yilmaz V, Tuzun E, Turkoglu R. Altered Cerebrospinal Fluid Neurofilament Light Chain but Not Neurogranin Levels Are Associated with Response to Ocrelizumab Treatment in Relapsing-Remitting Multiple Sclerosis: A Preliminary Study. Eur Neurol 2024; 87:203-210. [PMID: 38754397 DOI: 10.1159/000539376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Ocrelizumab is a CD20-targeting monoclonal antibody used for treatment of multiple sclerosis (MS). Serum and cerebrospinal fluid (CSF) neurofilament light (NFL) chain levels are reduced in MS patients under ocrelizumab treatment indicating a preventive action against neuro-axonal degeneration. Our aim, in this preliminary study, was to explore the impact of ocrelizumab treatment on synaptic integrity through assessment of neurogranin levels. METHODS Thirteen relapsing-remitting multiple sclerosis (RRMS) patients resistant to first-line immunomodulating agents were enrolled and followed up for 24 months under ocrelizumab treatment. Disease activity was monitored by periodic EDSS, MSSS, and cranial-spinal MRI assessments. No evidence of disease activity (NEDA)-3 was determined, and CSF levels of NFL (marker of neuro-axonal integrity) and neurogranin (marker of synaptic integrity) were measured by ELISA at baseline and 12-month ocrelizumab treatment. RESULTS Seven RRMS patients, who preserved NEDA-3 status during 24-month follow-up, showed ≥30% NFL level decrease, whereas 6 patients with stable/increased NFL levels displayed relapse, MRI lesion, or disability progression. Although most RRMS patients exhibited increased CSF levels of neurogranin under ocrelizumab treatment, patients with and without neurogranin level increase did not differ in terms of clinical features and NEDA-3 status. Baseline neurogranin levels negatively correlated with baseline EDSS scores. CONCLUSION Our results confirm that NFL effectively monitors treatment response of RRMS patients under ocrelizumab treatment. Neurogranin does not appear to exhibit a similar benefit in screening of RRMS disease activity. Nevertheless, lower neurogranin levels are associated with increased disability in RRMS indicating a potential disease activity biomarker function.
Collapse
Affiliation(s)
- Tuğçe Kızılay
- Neurology Clinic, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ruziye Erol
- Neurology Clinic, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ayça Simay Demir
- Neurology Clinic, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Duygu Özkan Yaşargün
- Neurology Clinic, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Recai Turkoglu
- Neurology Clinic, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
4
|
Johnson TR, Gandelman S, Serafin LR, Charles JY, Jacobs D. Rehabilitation Outcomes in Multiple Sclerosis Patients on Ocrelizumab Diagnosed With West Nile Virus Encephalitis. Cureus 2024; 16:e57063. [PMID: 38681299 PMCID: PMC11052554 DOI: 10.7759/cureus.57063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Multiple sclerosis (MS) has a global prevalence exceeding two million people and is a leading cause of non-traumatic physical disability. MS can be treated with ocrelizumab, an anti-CD20 monoclonal antibody. West Nile virus (WNV) is the most common cause of mosquito-borne viral encephalitis in North America. It can lead to neuroinvasive WNV disease (WNND) affecting the brain and peripheral nervous system, especially in immunocompromised patients, such as those being treated with ocrelizumab for MS. WNND is exceedingly rare and reported in less than 1% of cases of WNV. It has been established that inpatient rehabilitation improves functional outcomes in patients with MS and those with WNND. However, the inpatient rehabilitation outcomes in patients diagnosed with both WNND and MS have not been reported. In this study, we aimed to examine the rehabilitation outcomes of MS patients on ocrelizumab diagnosed with WNND. We performed a retrospective chart review of patients with MS treated with ocrelizumab, who were diagnosed with WNND and admitted to a single facility. Rehabilitation outcomes were assessed using functional independence measure (FIM) scores on admission and discharge. Three patients met the inclusion criteria; two in acute rehab, and one in the long-term acute care hospital (LTACH). Both patients admitted to acute inpatient rehabilitation showed an improvement in FIM scores from admission to discharge, one patient from 9 to 16 and the other from 14 to 54. However, the patient admitted to the LTACH had no improvement in FIM score from admission to discharge. Patients admitted to acute rehab were ultimately discharged home, while the patient admitted to the LTACH required discharge to a subacute rehabilitation facility. Based on our findings, intense and prolonged comprehensive inpatient rehabilitation is associated with improved functional outcomes and increased likelihood of discharge to home in this population suffering from both central and peripheral nervous system involvement due to MS and WNND.
Collapse
Affiliation(s)
- Taylor R Johnson
- Physical Medicine and Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Lauren R Serafin
- Physical Medicine and Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Jeremy Y Charles
- Physical Medicine and Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Dina Jacobs
- Neurology, Hospital of the University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
5
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Boziki M, Bakirtzis C, Sintila SA, Kesidou E, Gounari E, Ioakimidou A, Tsavdaridou V, Skoura L, Fylaktou A, Nikolaidou V, Stangou M, Nikolaidis I, Giantzi V, Karafoulidou E, Theotokis P, Grigoriadis N. Ocrelizumab in Patients with Active Primary Progressive Multiple Sclerosis: Clinical Outcomes and Immune Markers of Treatment Response. Cells 2022; 11:cells11121959. [PMID: 35741088 PMCID: PMC9222195 DOI: 10.3390/cells11121959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical, radiological and laboratory attributes of treatment response. In total, 22 patients with aPPMS followed for 24 months were included. The primary efficacy outcome was the proportion of patients with optimal response at 24 months, defined as patients free of relapses, free of confirmed disability accumulation (CDA) and free of T1 Gd-enhancing lesions and new/enlarging T2 lesions on the brain and cervical MRI. In total, 14 (63.6%) patients and 13 patients (59.1%) were classified as responders at 12 and 24 months, respectively. Time exhibited a significant effect on mean absolute and normalized gray matter cerebellar volume (F = 4.342, p = 0.23 and F = 4.279, p = 0.024, respectively). Responders at 24 months exhibited reduced peripheral blood ((%) of CD19+ cells) plasmablasts compared to non-responders at the 6-month point estimate (7.69 ± 4.4 vs. 22.66 ± 7.19, respectively, p = 0.043). Response to ocrelizumab was linked to lower total and gray matter cerebellar volume loss over time. Reduced plasmablast depletion was linked for the first time to sub-optimal response to ocrelizumab in aPPMS.
Collapse
Affiliation(s)
- Marina Boziki
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Styliani-Aggeliki Sintila
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evdoxia Gounari
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Aliki Ioakimidou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Vasiliki Tsavdaridou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Virginia Giantzi
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Eleni Karafoulidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
- Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|