1
|
Oturkar CC, Rosario SR, Hutson AD, Groman A, Edge SB, Morrison CD, Swetzig WM, Wang J, Park JH, Kaipparettu BA, Singh PK, Kumar S, Cappuccino HH, Ranjan M, Adjei A, Ghasemi M, Goey AK, Kulkarni S, Das GM. ESR1 and p53 interactome alteration defines mechanisms of tamoxifen response in luminal breast cancer. iScience 2024; 27:109995. [PMID: 38868185 PMCID: PMC11166704 DOI: 10.1016/j.isci.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The canonical mechanism behind tamoxifen's therapeutic effect on estrogen receptor α/ESR1+ breast cancers is inhibition of ESR1-dependent estrogen signaling. Although ESR1+ tumors expressing wild-type p53 were reported to be more responsive to tamoxifen (Tam) therapy, p53 has not been factored into choice of this therapy and the mechanism underlying the role of p53 in Tam response remains unclear. In a window-of-opportunity trial on patients with newly diagnosed stage I-III ESR1+/HER2/wild-type p53 breast cancer who were randomized to arms with or without Tam prior to surgery, we reveal that the ESR1-p53 interaction in tumors was inhibited by Tam. This resulted in functional reactivation of p53 leading to transcriptional reprogramming that favors tumor-suppressive signaling, as well as downregulation of oncogenic pathways. These findings illustrating the convergence of ESR1 and p53 signaling during Tam therapy enrich mechanistic understanding of the impact of p53 on the response to Tam therapy.
Collapse
Affiliation(s)
- Chetan C. Oturkar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Adrianne Groman
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stephen B. Edge
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Carl D. Morrison
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wendy M. Swetzig
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Prashant K. Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shicha Kumar
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Helen H. Cappuccino
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Manish Ranjan
- Division of Breast Surgery, Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Araba Adjei
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mohammad Ghasemi
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew K.L. Goey
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Swati Kulkarni
- Division of Breast Surgery, Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Gokul M. Das
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
2
|
Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, Xu Y, Wang W, Sun M, Shi J. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother 2022; 151:113116. [PMID: 35598365 DOI: 10.1016/j.biopha.2022.113116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
3
|
Massimini M, Romanucci M, De Maria R, Della Salda L. An Update on Molecular Pathways Regulating Vasculogenic Mimicry in Human Osteosarcoma and Their Role in Canine Oncology. Front Vet Sci 2021; 8:722432. [PMID: 34631854 PMCID: PMC8494780 DOI: 10.3389/fvets.2021.722432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.
Collapse
|
4
|
Kandil S, Prencipe F, Jones S, Hiscox S, Westwell AD. The discovery of new and more potent chloropyramine (C4) analogues for the potential treatment of invasive breast cancer. Chem Biol Drug Des 2017; 91:314-321. [PMID: 28816016 DOI: 10.1111/cbdd.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer is the second most common cancer worldwide, accounting for 25% of all female cancers. Although the survival rate has increased significantly in the past few decades, patients who develop secondary site metastasis as well as those diagnosed with triple negative breast cancer still represent a real unmet medical challenge. Previous studies have shown that chloropyramine (C4) inhibits FAK-VEGFR3 signalling. More recently, C4 is reported to have SASH1 inducing properties. However, C4 exerts its antitumour and antiangiogenic effects at high micromolar concentrations (>100 μm) that would not be compatible with further drug development against invasive breast cancer driven by FAK signalling. In this study, molecular modelling guided structural modifications have been introduced to the chloropyramine C4 scaffold to improve its activity in breast cancer cell lines. Seventeen compounds were designed and synthesized, and their antiproliferative activity was evaluated against three human breast cancer lines (MDA-MB-231, BT474 and T47D). Compound 5c was identified to display an average activity of IC50 = 23.5-31.3 μm, which represents a significant improvement of C4 activity in the same assay model. Molecular modelling and pharmacokinetic studies provided more promising insights into the mechanistic features of this new series.
Collapse
Affiliation(s)
- Sahar Kandil
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Filippo Prencipe
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Samuel Jones
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Stephen Hiscox
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Andrew D Westwell
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|