1
|
Yamane M, Ozeki K, Okano K, Kudo T, Ito K. Evaluation of the non-linearity of NA808 in liver not reflected in plasma using a rat pharmacokinetic study and PBPK modelling. Xenobiotica 2023; 53:498-506. [PMID: 37846493 DOI: 10.1080/00498254.2023.2267107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
When NA808, a potent HCV replication inhibitor, was intravenously administered to rats, it was distributed to the liver. The AUC ratio in the liver of 20 mg/kg to 2 mg/kg was greater than the dose ratio, whereas exposure in plasma was increased in a dose-proportional manner. Saturation of biliary excretion was also shown at 20 mg/kg.NA808 was revealed to be a substrate for both OATP1B and MRP2 transporters by an in vitro study using OATP1B1-MRP2 expressing cells. [14C]NA808 was taken up into the cells by OATP1B1 and excreted from cells by MRP2 efficiently (Papp ratio: 24.2-70.2). The Papp ratio decreased with increasing NA808 concentration.PBPK modelling was constructed to display the blood and liver concentration time profile and biliary excretion of NA808. This model analysis was able to reproduce the pharmacokinetics in rats; the degree of increase in the liver exposure from 2 to 20 mg/kg was more than dose-proportional and was greater than the increase in the blood exposure due to saturation of efflux transporters.In drug development, to avoid unexpected toxicity in tissues, it is important to consider the potential for tissue non-linearity with linear plasma exposure based on pre-clinical data and PBPK modelling.
Collapse
Affiliation(s)
- Mizuki Yamane
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Kazuhisa Ozeki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Ken Okano
- Clinical Development Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Toshiyuki Kudo
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
2
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
3
|
Seidemann L, Prinz S, Scherbel JC, Götz C, Seehofer D, Damm G. Optimization of extracellular matrix for primary human hepatocyte cultures using mixed collagen-Matrigel matrices. EXCLI JOURNAL 2023; 22:12-34. [PMID: 36660192 PMCID: PMC9837384 DOI: 10.17179/excli2022-5459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 01/21/2023]
Abstract
Loss of differentiation of primary human hepatocytes (PHHs) ex vivo is a known problem of in vitro liver models. Culture optimizations using collagen type I and Matrigel reduce the dedifferentiation process but are not able to prevent it. While neither of these extracellular matrices (ECMs) on their own correspond to the authentic hepatic ECM, a combination of them could more closely resemble the in vivo situation. Our study aimed to systematically analyze the influence of mixed matrices composed of collagen type I and Matrigel on the maintenance and reestablishment of hepatic functions. Therefore, PHHs were cultured on mixed collagen-Matrigel matrices in monolayer and sandwich cultures and viability, metabolic capacity, differentiation markers, cellular arrangement and the cells' ability to repolarize and form functional bile canaliculi were assessed by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), functional assays and immunofluorescence microscopy. Our results show that mixed matrices were superior to pure matrices in maintaining metabolic capacity and hepatic differentiation. In contrast, Matrigel supplementation can impair the development of a proper hepatocytic polarization. Our systematic study helps to compose an optimized ECM to maintain and reestablish hepatic differentiation on cellular and multicellular levels in human liver models.
Collapse
Affiliation(s)
- Lena Seidemann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Sarah Prinz
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Jan-Constantin Scherbel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Christina Götz
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany,*To whom correspondence should be addressed: Georg Damm, Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany; Tel.: +49-341-9739656, E-mail:
| |
Collapse
|
4
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Zerdoug A, Le Vée M, Uehara S, Lopez B, Chesné C, Suemizu H, Fardel O. Contribution of Humanized Liver Chimeric Mice to the Study of Human Hepatic Drug Transporters: State of the Art and Perspectives. Eur J Drug Metab Pharmacokinet 2022; 47:621-637. [DOI: 10.1007/s13318-022-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
6
|
Fu S, Yu F, Sun T, Hu Z. Transporter-mediated drug–drug interactions – Study design, data analysis, and implications for in vitro evaluations. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Wegler C, Matsson P, Krogstad V, Urdzik J, Christensen H, Andersson TB, Artursson P. Influence of Proteome Profiles and Intracellular Drug Exposure on Differences in CYP Activity in Donor-Matched Human Liver Microsomes and Hepatocytes. Mol Pharm 2021; 18:1792-1805. [PMID: 33739838 PMCID: PMC8041379 DOI: 10.1021/acs.molpharmaceut.1c00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
Human liver microsomes (HLM) and human hepatocytes (HH) are important in vitro systems for studies of intrinsic drug clearance (CLint) in the liver. However, the CLint values are often in disagreement for these two systems. Here, we investigated these differences in a side-by-side comparison of drug metabolism in HLM and HH prepared from 15 matched donors. Protein expression and intracellular unbound drug concentration (Kpuu) effects on the CLint were investigated for five prototypical probe substrates (bupropion-CYP2B6, diclofenac-CYP2C9, omeprazole-CYP2C19, bufuralol-CYP2D6, and midazolam-CYP3A4). The samples were donor-matched to compensate for inter-individual variability but still showed systematic differences in CLint. Global proteomics analysis outlined differences in HLM from HH and homogenates of human liver (HL), indicating variable enrichment of ER-localized cytochrome P450 (CYP) enzymes in the HLM preparation. This suggests that the HLM may not equally and accurately capture metabolic capacity for all CYPs. Scaling CLint with CYP amounts and Kpuu could only partly explain the discordance in absolute values of CLint for the five substrates. Nevertheless, scaling with CYP amounts improved the agreement in rank order for the majority of the substrates. Other factors, such as contribution of additional enzymes and variability in the proportions of active and inactive CYP enzymes in HLM and HH, may have to be considered to avoid the use of empirical scaling factors for prediction of drug metabolism.
Collapse
Affiliation(s)
- Christine Wegler
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Pär Matsson
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
| | - Veronica Krogstad
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Jozef Urdzik
- Department
of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Hege Christensen
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Tommy B. Andersson
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Per Artursson
- Department
of Pharmacy and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|