1
|
Umehara K, Parrott N, Schindler E, Legras V, Meneses-Lorente G. PBPK Modeling of Entrectinib and Its Active Metabolite to Derive Dose Adjustments in Pediatric Populations Co-Administered with CYP3A4 Inhibitors. Clin Pharmacol Ther 2024; 116:1130-1140. [PMID: 39023380 DOI: 10.1002/cpt.3386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Physiologically based pharmacokinetic (PBPK) models of entrectinib and its equipotent metabolite, M5, were established in healthy adult subjects and extrapolated to pediatric patients to predict increases in steady-state systemic exposure on co-administration of strong and moderate CYP3A4 inhibitors (itraconazole at 5 mg/kg, erythromycin at 7.5-12.5 mg/kg and fluconazole at 3-12 mg/kg, respectively). Adult model establishment involved the optimization of fraction metabolized by CYP3A4 (0.92 for entrectinib and 0.98 for M5) using data from an itraconazole DDI study. This model captured well the exposure changes of entrectinib and M5 seen in adults co-administered with the strong CYP3A4 inducer rifampicin. In pediatrics, reasonable prediction of entrectinib and M5 pharmacokinetics in ≧2 year olds was achieved when using the default models for physiological development and enzyme ontogenies. However, a two to threefold misprediction of entrectinib and M5 exposures was seen in <2 year olds which may be due to missing mechanistic understanding of gut physiology and/or protein binding in very young children. Model predictions for ≧2 year olds showed that entrectinib AUC(0-t) was increased by approximately sevenfold and five to threefold by strong and high-moderate and low-moderate CYP3A4 inhibitors, respectively. Based on these victim DDI predictions, dose adjustments for entrectinib when given concomitantly with strong and moderate CYP3A4 inhibitors in pediatric subjects were recommended. These simulations informed the approved entrectinib label without the need for additional clinical pharmacology studies.
Collapse
Affiliation(s)
- Kenichi Umehara
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Emilie Schindler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Valentin Legras
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Georgina Meneses-Lorente
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Roche Products Ltd, Welwyn, UK
| |
Collapse
|
2
|
Li W, Vazvaei-Smith F, Dear G, Boer J, Cuyckens F, Fraier D, Liang Y, Lu D, Mangus H, Moliner P, Pedersen ML, Romeo AA, Spracklin DK, Wagner DS, Winter S, Xu XS. Metabolite Bioanalysis in Drug Development: Recommendations from the IQ Consortium Metabolite Bioanalysis Working Group. Clin Pharmacol Ther 2024; 115:939-953. [PMID: 38073140 DOI: 10.1002/cpt.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 03/13/2024]
Abstract
The intent of this perspective is to share the recommendations of the International Consortium for Innovation and Quality in Pharmaceutical Development Metabolite Bioanalysis Working Group on the fit-for-purpose metabolite bioanalysis in support of drug development and registration. This report summarizes the considerations for the trigger, timing, and rigor of bioanalysis in the various assessments to address unique challenges due to metabolites, with respect to efficacy and safety, which may arise during drug development from investigational new drug (IND) enabling studies, and phase I, phase II, and phase III clinical trials to regulatory submission. The recommended approaches ensure that important drug metabolites are identified in a timely manner and properly characterized for efficient drug development.
Collapse
Affiliation(s)
- Wenkui Li
- Pharmacokinetic Sciences, Novartis Biomedical Research, East Hanover, New Jersey, USA
| | - Faye Vazvaei-Smith
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Gordon Dear
- Drug Metabolism and Pharmacokinetics, GSK, Ware, UK
| | - Jason Boer
- Drug Metabolism and Pharmacokinetics, Incyte Corporation, Wilmington, Delaware, USA
| | - Filip Cuyckens
- Drug Metabolism and Pharmacokinetics, Janssen R & D, Beerse, Belgium
| | - Daniela Fraier
- Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Yuexia Liang
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Ding Lu
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Inc., Boston, Massachusetts, USA
| | - Heidi Mangus
- Drug Metabolism and Pharmacokinetics, Agios Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Patricia Moliner
- Enzymology and Metabolism, Department of Translational Medicine and Early Development, Sanofi, Montpellier, Occitanie, France
| | - Mette Lund Pedersen
- DMPK, Research and Early Development, CVRM, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea A Romeo
- Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Douglas K Spracklin
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut, USA
| | - David S Wagner
- Drug Metabolism and Disposition, AbbVie, North Chicago, Illinois, USA
| | - Serge Winter
- Pharmacokinetic Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Xiaohui Sophia Xu
- Clinical Bioanalysis, Translation Medicine, Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| |
Collapse
|
3
|
Djebli N, Parrott N, Jaminion F, O'Jeanson A, Guerini E, Carlile D. Evaluation of the potential impact on pharmacokinetics of various cytochrome P450 substrates of increasing IL-6 levels following administration of the T-cell bispecific engager glofitamab. CPT Pharmacometrics Syst Pharmacol 2024; 13:396-409. [PMID: 38044486 PMCID: PMC10941566 DOI: 10.1002/psp4.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Glofitamab is a novel T cell bispecific antibody developed for treatment of relapsed-refractory diffuse large B cell lymphoma and other non-Hodgkin's lymphoma indications. By simultaneously binding human CD20-expressing tumor cells and CD3 on T cells, glofitamab induces tumor cell lysis, in addition to T-cell activation, proliferation, and cytokine release. Here, we describe physiologically-based pharmacokinetic (PBPK) modeling performed to assess the impact of glofitamab-associated transient increases in interleukin 6 (IL-6) on the pharmacokinetics of several cytochrome P450 (CYP) substrates. By refinement of a previously described IL-6 model and inclusion of in vitro CYP suppression data for CYP3A4, CYP1A2, and 2C9, a PBPK model was established in Simcyp to capture the induced IL-6 levels seen when glofitamab is administered at the intended dose and dosing regimen. Following model qualification, the PBPK model was used to predict the potential impact of CYP suppression on exposures of various CYP probe substrates. PBPK analysis predicted that, in the worst-case, the transient elevation of IL-6 would increase exposures of CYP3A4, CYP2C9, and CYP1A2 substrates by less than or equal to twofold. Increases for CYP3A4, CYP2C9, and CYP1A2 substrates were projected to be 1.75, 1.19, and 1.09-fold following the first administration and 2.08, 1.28, and 1.49-fold following repeated administrations. It is recommended that there are no restrictions on concomitant treatment with any other drugs. Consideration may be given for potential drug-drug interaction during the first cycle in patients who are receiving concomitant CYP substrates with a narrow therapeutic index via monitoring for toxicity or for drug concentrations.
Collapse
Affiliation(s)
- Nassim Djebli
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
- Luzsana Biotechnology, Clinical Pharmacology and Early DevelopmentBaselSwitzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Felix Jaminion
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | | | - Elena Guerini
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - David Carlile
- Roche Pharmaceutical Research and Early Development, Roche Innovation CenterWelwynUK
| |
Collapse
|
4
|
Chen L, Yao N, Yang H, Zhang S, Zhang K. Prediction of ROS1 and TRKA/B/C occupancy in plasma and cerebrospinal fluid for entrectinib alone and in DDIs using physiologically based pharmacokinetic (PBPK) modeling approach. Cancer Chemother Pharmacol 2024; 93:107-119. [PMID: 37838624 DOI: 10.1007/s00280-023-04598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Entrectinib (ENT) is a potent c-ros oncogene 1(ROS1) and neurotrophic tyrosine receptor kinase (NTRKA/B/C) inhibitor. To determine the optimum dosage of ENT using ROS1 and NTRKA/B/C occupancy in plasma and cerebrospinal fluid (CSF) in drug-drug interactions (DDIs), physiologically-based pharmacokinetic (PBPK) models for healthy subjects and cancer population were developed for ENT and M5 (active metabolite). METHODS The PBPK models were built using the modeling parameters of ENT and M5 that were mainly derived from the published paper on the ENT PBPK model, and then validated by the observed pharmacokinetics (PK) in plasma and CSF from healthy subjects and patients. RESULTS The PBPK model showed that AUC, Cmax, and Ctrough ratios between predictions and observations are within the range of 0.5-2.0, except that the M5 AUC ratio is slightly above 2.0 (2.34). Based on the efficacy (> 75% occupancy for ROS1 and NTRKA/B/C) and safety (AUC < 160 μM·h and Cmax < 8.9 μM), the appropriate dosing regimens were identified. The appropriate dosage is 600 mg once daily (OD) when administered alone, reduced to 200 mg and 400 mg OD with itraconazole and fluconazole, respectively. ENT is not recommended for co-administration with rifampicin or efavirenz, but is permitted with fluvoxamine or dexamethasone. CONCLUSION The PBPK models can serve as a powerful approach to predict ENT concentration as well as ROS1 and NTRKA/B/C occupancy in plasma and CSF.
Collapse
Affiliation(s)
- Liangang Chen
- 980 (Bethune International Peace) Hospital of PLA Joint Logistics Support Forces, Shijiazhuang, 050051, China
| | - Na Yao
- 980 (Bethune International Peace) Hospital of PLA Joint Logistics Support Forces, Shijiazhuang, 050051, China
| | - Hongjie Yang
- 980 (Bethune International Peace) Hospital of PLA Joint Logistics Support Forces, Shijiazhuang, 050051, China
| | - Shaofeng Zhang
- Shijiazhuang Medical College, Shijiazhuang, 050599, China
| | - Kai Zhang
- Department of Medical Oncology, Shijiazhuang People's Hospital, Shijiazhuang, 050051, China.
| |
Collapse
|
5
|
Wang X, Chen F, Guo N, Gu Z, Lin H, Xiang X, Shi Y, Han B. Application of physiologically based pharmacokinetics modeling in the research of small-molecule targeted anti-cancer drugs. Cancer Chemother Pharmacol 2023; 92:253-270. [PMID: 37466731 DOI: 10.1007/s00280-023-04566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Physiologically based pharmacokinetics (PBPK) models are increasingly used in the drug research and development, especially in anti-cancer drugs. Between 2001 and 2020, a total of 89 small-molecule targeted antitumor drugs were approved in China and the United States, some of which already included PBPK modeling in their application or approval packages. This article intended to review the prevalence and application of PBPK model in these drugs. METHOD Article search was performed in the PubMed to collect English research articles on small-molecule targeted anti-cancer drugs using PBPK modeling. The selected articles were classified into nine categorizes according to the application areas and further analyzed. RESULT From 2001 to 2020, more than 60% of small-molecule targeted anti-cancer drugs (54/89) were studied using PBPK model with a wide range of application. Ninety research articles were included, of which 48 involved enzyme-mediated drug-drug interaction (DDI). Of these retrieved articles, Simcyp, GastroPlus, and PK-Sim were the most widely model building platforms, which account for 63.8%, 15.2%, and 8.6%, respectively. CONCLUSION PBPK modeling is commonly and widely used to research small-molecule targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Fang Chen
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
| | - Zhichun Gu
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Houwen Lin
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Yufei Shi
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China.
| |
Collapse
|
6
|
Desai AV, Robinson GW, Gauvain K, Basu EM, Macy ME, Maese L, Whipple NS, Sabnis AJ, Foster JH, Shusterman S, Yoon J, Weiss BD, Abdelbaki MS, Armstrong AE, Cash T, Pratilas CA, Corradini N, Marshall LV, Farid-Kapadia M, Chohan S, Devlin C, Meneses-Lorente G, Cardenas A, Hutchinson KE, Bergthold G, Caron H, Chow Maneval E, Gajjar A, Fox E. Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro Oncol 2022; 24:1776-1789. [PMID: 35395680 PMCID: PMC9527518 DOI: 10.1093/neuonc/noac087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Entrectinib is a TRKA/B/C, ROS1, ALK tyrosine kinase inhibitor approved for the treatment of adults and children aged ≥12 years with NTRK fusion-positive solid tumors and adults with ROS1 fusion-positive non-small-cell lung cancer. We report an analysis of the STARTRK-NG trial, investigating the recommended phase 2 dose (RP2D) and activity of entrectinib in pediatric patients with solid tumors including primary central nervous system tumors. METHODS STARTRK-NG (NCT02650401) is a phase 1/2 trial. Phase 1, dose-escalation of oral, once-daily entrectinib, enrolled patients aged <22 years with solid tumors with/without target NTRK1/2/3, ROS1, or ALK fusions. Phase 2, basket trial at the RP2D, enrolled patients with intracranial or extracranial solid tumors harboring target fusions or neuroblastoma. Primary endpoints: phase 1, RP2D based on toxicity; phase 2, objective response rate (ORR) in patients harboring target fusions. Safety-evaluable patients: ≥1 dose of entrectinib; response-evaluable patients: measurable/evaluable baseline disease and ≥1 dose at RP2D. RESULTS At data cutoff, 43 patients, median age of 7 years, were response-evaluable. In phase 1, 4 patients experienced dose-limiting toxicities. The most common treatment-related adverse event was weight gain (48.8%). Nine patients experienced bone fractures (20.9%). In patients with fusion-positive tumors, ORR was 57.7% (95% CI 36.9-76.7), median duration of response was not reached, and median (interquartile range) duration of treatment was 10.6 months (4.2-18.4). CONCLUSIONS Entrectinib resulted in rapid and durable responses in pediatric patients with solid tumors harboring NTRK1/2/3 or ROS1 fusions.
Collapse
Affiliation(s)
- Ami V Desai
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Karen Gauvain
- Pediatric Neuro-Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Margaret E Macy
- Pediatric Hematology-Oncology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Maese
- Department of Pediatrics, Division of Hematology/Oncology, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Nicholas S Whipple
- Pediatric Hematology-Oncology, University of Utah, Salt Lake City, Utah, USA
| | - Amit J Sabnis
- Division of Pediatric Oncology, Department of Pediatrics, University of California, San Francisco, California, USA
| | - Jennifer H Foster
- Department of Pediatrics, Hematology-Oncology, Texas Children’s Hospital, Houston, Texas, USA
| | - Suzanne Shusterman
- Pediatric Hematology and Oncology, Dana Farber Cancer Institute/Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Janet Yoon
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - Brian D Weiss
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mohamed S Abdelbaki
- Division of Hematology & Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas Cash
- Pediatric Hematology/Oncology, Aflac Cancer & Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christine A Pratilas
- Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nadège Corradini
- Department of Pediatric Hematology and Oncology, Institute of Pediatric Hematology and Oncology (IHOPe), Léon Bérard Cancer Centre, Lyon, France
| | - Lynley V Marshall
- Children and Young People’s Unit, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | | | - Saibah Chohan
- PDD Data & Statistical Sciences, F. Hoffmann-La Roche Ltd., Mississauga, Ontario, Canada
| | - Clare Devlin
- Pharma Development Oncology and Hematology, Roche Products Ltd., Welwyn Garden City, UK
| | | | - Alison Cardenas
- Clinical Safety, Genentech, Inc., South San Francisco, California, USA
| | | | | | - Hubert Caron
- Product Development Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elizabeth Fox
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Bolleddula J, Gopalakrishnan S, Hu P, Dong J, Venkatakrishnan K. Alternatives to rifampicin: A review and perspectives on the choice of strong CYP3A inducers for clinical drug-drug interaction studies. Clin Transl Sci 2022; 15:2075-2095. [PMID: 35722783 PMCID: PMC9468573 DOI: 10.1111/cts.13357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
N-Nitrosamine (NA) impurities are considered genotoxic and have gained attention due to the recall of several marketed drug products associated with higher-than-permitted limits of these impurities. Rifampicin is an index inducer of multiple cytochrome P450s (CYPs) including CYP2B6, 2C8, 2C9, 2C19, and 3A4/5 and an inhibitor of OATP1B transporters (single dose). Hence, rifampicin is used extensively in clinical studies to assess drug-drug interactions (DDIs). Despite NA impurities being reported in rifampicin and rifapentine above the acceptable limits, these critical anti-infective drugs are available for therapeutic use considering their benefit-risk profile. Reports of NA impurities in rifampicin products have created uncertainty around using rifampicin in clinical DDI studies, especially in healthy volunteers. Hence, a systematic investigation through a literature search was performed to determine possible alternative index inducer(s) to rifampicin. The available strong CYP3A inducers were selected from the University of Washington DDI Database and their in vivo DDI potential assessed using the data from clinical DDI studies with sensitive CYP3A substrates. To propose potential alternative CYP3A inducers, factors including lack of genotoxic potential, adequate safety, feasibility of multiple dose administration to healthy volunteers, and robust in vivo evidence of induction of CYP3A were considered. Based on the qualifying criteria, carbamazepine, phenytoin, and lumacaftor were identified to be the most promising alternatives to rifampicin for conducting CYP3A induction DDI studies. Strengths and limitations of the proposed alternative CYP3A inducers, the magnitude of in vivo CYP3A induction, appropriate study designs for each alternative inducer, and future perspectives are presented in this paper.
Collapse
Affiliation(s)
- Jayaprakasam Bolleddula
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | | | - Ping Hu
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Jennifer Dong
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Karthik Venkatakrishnan
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| |
Collapse
|
8
|
Jiang Q, Li M, Li H, Chen L. Entrectinib, a new multi-target inhibitor for cancer therapy. Biomed Pharmacother 2022; 150:112974. [PMID: 35447552 DOI: 10.1016/j.biopha.2022.112974] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical practice shows that when single-target drugs treat multi-factor diseases such as tumors, cardiovascular system and endocrine system diseases, it is often difficult to achieve good therapeutic effects, and even serious adverse reactions may occur. Multi-target drugs can simultaneously regulate multiple links of disease, improve efficacy, reduce adverse reactions, and improve drug resistance. They are ideal drugs for treating complex diseases, and therefore have become the main direction of drug development. At present, some multi-target drugs have been successfully used in many major diseases. Entrectinib is an oral small molecule inhibitor that targets TRK, ROS1, and ALK. It is used to treat locally advanced or metastatic solid tumors with NTRK1/2/3, ROS1 and ALK gene fusion mutations. It can pass through the blood-brain barrier and is the only TRK inhibitor clinically proven to be effective against primary and metastatic brain diseases. In 2019, entrectinib was approved by the FDA to treat adult patients with ROS1-positive metastatic non-small cell lung cancer. Case reports showed that continuous administration of entrectinib was effective and tolerable. In this review, we give a brief introduction to TKK, ROS1 and ALK, and on this basis, we give a detailed and comprehensive introduction to the mechanism of action, pharmacokinetics, pharmacodynamics, clinical efficacy, tolerability and drug interactions of entrectinib.
Collapse
Affiliation(s)
- Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Mingxue Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|