1
|
Kirubakaran R, Singh RM, Carland JE, Day RO, Stocker SL. Evaluation of Published Population Pharmacokinetic Models to Inform Tacrolimus Therapy in Adult Lung Transplant Recipients. Ther Drug Monit 2024; 46:434-445. [PMID: 38723160 DOI: 10.1097/ftd.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The applicability of currently available tacrolimus population pharmacokinetic models in guiding dosing for lung transplant recipients is unclear. In this study, the predictive performance of relevant tacrolimus population pharmacokinetic models was evaluated for adult lung transplant recipients. METHODS Data from 43 lung transplant recipients (1021 tacrolimus concentrations) administered an immediate-release oral formulation of tacrolimus were used to evaluate the predictive performance of 17 published population pharmacokinetic models for tacrolimus. Data were collected from immediately after transplantation up to 90 days after transplantation. Model performance was evaluated using (1) prediction-based assessments (bias and imprecision) of individual predicted tacrolimus concentrations at the fourth dosing based on 1 to 3 previous dosings and (2) simulation-based assessment (prediction-corrected visual predictive check; pcVPC). Both assessments were stratified based on concomitant azole antifungal use. Model performance was clinically acceptable if the bias was within ±20%, imprecision was ≤20%, and the 95% confidence interval of bias crossed zero. RESULTS In the presence of concomitant antifungal therapy, no model showed acceptable performance in predicting tacrolimus concentrations at the fourth dosing (n = 33), and pcVPC plots displayed poor model fit to the data set. However, this fit slightly improved in the absence of azole antifungal use, where 4 models showed acceptable performance in predicting tacrolimus concentrations at the fourth dosing (n = 33). CONCLUSIONS Although none of the evaluated models were appropriate in guiding tacrolimus dosing in lung transplant recipients receiving concomitant azole antifungal therapy, 4 of these models displayed potential applicability in guiding dosing in recipients not receiving concomitant azole antifungal therapy. However, further model refinement is required before the widespread implementation of such models in clinical practice.
Collapse
Affiliation(s)
- Ranita Kirubakaran
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
- Department of Pharmacy, Ministry of Health, Putrajaya, Malaysia
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rani M Singh
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Jane E Carland
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Richard O Day
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Sophie L Stocker
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia ; and
- Sydney Musculoskeletal Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Nguyen TVA, Le BH, Nguyen MT, Le VT, Tran VT, Le DT, Vu DAM, Truong QK, Le TH, Nguyen HTL. Pharmacogenomic Analysis of CYP3A5*3 and Tacrolimus Trough Concentrations in Vietnamese Renal Transplant Outcomes. Pharmgenomics Pers Med 2024; 17:53-64. [PMID: 38332855 PMCID: PMC10850765 DOI: 10.2147/pgpm.s439400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Purpose CYP3A5 polymorphisms have been associated with variations in the pharmacokinetics of tacrolimus (Tac) in kidney transplant patients. Our study aims to quantify how the CYP3A5 genotype influences tacrolimus trough concentrations (C0) in a Vietnamese outpatient population by selecting an appropriate population pharmacokinetic model of Tac for our patients. Patients and Methods The external dataset was obtained prospectively from 54 data of adult kidney transplant recipients treated at the 103 Military Hospital. All published Tac population pharmacokinetic models were systematically screened from PubMed and Scopus databases and were selected based on our patient's available characteristics. Mean absolute prediction error (MAPE), mean prediction error, and goodness-of-fit plots were used to identify the appropriate model for finding the formula that identifies the influence of CYP3A5 genotype on the pharmacokinetic data of Vietnamese patients. Results The model of Zhu et al had a good predictive ability with MAPE of 19.29%. The influence of CYP3A5 genotype on tacrolimus clearance was expressed by the following formulas: CL/F=27 , 2 × [ ( WT/70 ) 0 , 75 ] × [ ( HCT/0 , 35 ) -0 , 501 ] × [ ( POD/180 ) 0 , 0306 ] × CYP3A5 ( L/h ) . The simulation result showed that Tac C0 was significantly higher in patients not expressing CYP3A5 (p< 0.001). Conclusion The incorporation of the CYP3A5 phenotype into Zhu's structural model has significantly enhanced our ability to predict Tacrolimus trough levels in the Vietnamese population. This study's results underscore the valuable role of CYP3A5 phenotype in optimizing the forecast of Tac concentrations, offering a promising avenue to assist health-care practitioners in their clinical decision-making and ultimately advance patient care outcomes.
Collapse
Affiliation(s)
| | - Ba Hai Le
- Department of Clinical Pharmacy, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Minh Thanh Nguyen
- Department of Clinical Pharmacy, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Viet Thang Le
- Department of Nephrology and Dialysis, 103 Military Hospital, Hanoi, Vietnam
| | - Viet Tien Tran
- Department of Infectious Diseases, 103 Military Hospital, Hanoi, Vietnam
| | - Dinh Tuan Le
- Department of Rheumatology and Endocrinology, 103 Military Hospital, Hanoi, Vietnam
| | - Duong Anh Minh Vu
- Department of Clinical Pharmacy, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Quy Kien Truong
- Department of Nephrology and Dialysis, 103 Military Hospital, Hanoi, Vietnam
| | - Trong Hieu Le
- Department of Clinical Pharmacy, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | |
Collapse
|