1
|
Santos-Ortega Y, Flynt A. Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri. Methods Mol Biol 2022; 2360:253-277. [PMID: 34495520 PMCID: PMC8959005 DOI: 10.1007/978-1-0716-1633-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
2
|
Kinobe RT, Owens L. A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin's possible mode of action against SARS-CoV-2. Fundam Clin Pharmacol 2021; 35:260-276. [PMID: 33427370 PMCID: PMC8013482 DOI: 10.1111/fcp.12644] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 01/02/2023]
Abstract
Viral infections remain a major cause of economic loss with an unmet need for novel therapeutic agents. Ivermectin is a putative antiviral compound; the proposed mechanism is the inhibition of nuclear translocation of viral proteins, facilitated by mammalian host importins, a necessary process for propagation of infections. We systematically reviewed the evidence for the applicability of ivermectin against viral infections including SARS‐CoV‐2 regarding efficacy, mechanisms and selective toxicity. The SARS‐CoV‐2 genome was mined to determine potential nuclear location signals for ivermectin and meta‐analyses for in vivo studies included all comparators over time, dose range and viral replication in multiple organs. Ivermectin inhibited the replication of many viruses including those in Flaviviridae, Circoviridae and Coronaviridae families in vitro. Real and mock nuclear location signals were identified in SARS‐CoV‐2, a potential target for ivermectin and predicting a sequestration bait for importin β, stopping infected cells from reaching a virus‐resistant state. While pharmacokinetic evaluations indicate that ivermectin could be toxic if applied based on in vitro studies, inhibition of viral replication in vivo was shown for Porcine circovirus in piglets and Suid herpesvirus in mice. Overall standardized mean differences and 95% confidence intervals for ivermectin versus controls were −4.43 (−5.81, −3.04), p < 0.00001. Based on current results, the potential for repurposing ivermectin as an antiviral agent is promising. However, further work is needed to reconcile in vitro studies with clinical efficacy. Developing ivermectin as an additional antiviral agent should be pursued with an emphasis on pre‐clinical trials in validated models of infection.
Collapse
Affiliation(s)
- Robert T Kinobe
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Leigh Owens
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
3
|
Ismail S, Tulsi Naik KS, Rajam MV, Mishra RK. Targeting genes involved in nucleopolyhedrovirus DNA multiplication through RNA interference technology to induce resistance against the virus in silkworms. Mol Biol Rep 2020; 47:5333-5342. [PMID: 32617957 DOI: 10.1007/s11033-020-05615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
RNA interference (RNAi) has become an efficient tool for inducing resistance to viruses in many organisms. In this study, Escherichia coli cells were engineered to produce stable double-stranded RNA (dsRNA) against the nucleopolyhedrosis virus to elicit RNAi in silkworms. The immediate-early-1 (ie-1) and late expression factor-1 (lef-1) genes of the Bombyx mori nucleopolyhedrovirus (BmNPV) involved in viral DNA multiplication were cloned in the plasmid L4440 under the influence of the double T7 promoter and transformed to E. coli HT115 DE3 host cells. On induction with isopropyl β-D-thiogalactopyranoside, these cells efficiently produced dsRNA of the cloned genes. The B. mori larvae were fed with 50 µL of E. coli cells expressing ie-1 and lef-1 dsRNAs (each approximately 25 µg) to elicit RNAi. The semi-quantitative and quantitative PCR analysis of RNA from the midgut of the dsRNA-fed larvae revealed a significant reduction in the expression of the target genes involved in BmNPV multiplication, which restricted virus copy numbers to 100 compared with 1.9 × 105 in the infected controls. Furthermore, the dsRNA-fed infected larvae showed > 50% increased survivability compared with the infected controls. The study revealed the successful use of bacteria as vectors for efficiently delivering dsRNA to elicit RNAi against BmNPV in silkworms.
Collapse
Affiliation(s)
- Sahar Ismail
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India
| | - K S Tulsi Naik
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India.
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi, Benito Juarez Marg, South Campus, New Delhi, 110021, India
| | - Rakesh Kumar Mishra
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India
| |
Collapse
|
4
|
Ramesh Kumar D, Elumalai R, Raichur AM, Sanjuktha M, Rajan JJ, Alavandi SV, Vijayan KK, Poornima M, Santiago TC. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulfate nanocapsule delivery system in Penaeus monodon post-larvae. Antiviral Res 2016; 131:124-30. [PMID: 27132538 DOI: 10.1016/j.antiviral.2016.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022]
Abstract
In the present study, a suitable carrier system was developed for the delivery of dsRNA into Penaeus monodon (P. monodon) post larvae to silence the Monodon baculovirus (MBV) structural gene of p74. The carrier system was developed by layer by layer adsorption of oppositely charged chitosan-dextran sulfate, on charged silica nanoparticles. The silica template was removedto produce multilayered hollow nanocapsules (CS-DS) that were utilized for dsRNA loading at an alkaline pH. The capsule's surface was modified by conjugating with shrimp feed for enhanced cellular uptake. In vivo cellular uptake of CS-DS/FITC loaded nanocapsules conjugated with feed was studied after oral administration into post-larvae. The results revealed that the encapsulated FITC was effectively delivered and exhibited a sustained release into the cytoplasm of shrimp post-larvae. The MBV challenge study for structural gene p74was conducted after 3-25 days of post infection (dpi) with respective CS-DS/dsRNA coated with feed. The results showed a significant survival rate of 86.63% and effective gene silencing in P. monodon. Our findings indicated that the delivery of dsRNA using shrimp feed coatedCS-DSnanocapsules could be a novel approach to prevent viral infections in shrimp.
Collapse
Affiliation(s)
- D Ramesh Kumar
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - Rajasegaran Elumalai
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
| | - M Sanjuktha
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - J J Rajan
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - S V Alavandi
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - K K Vijayan
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - M Poornima
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - T C Santiago
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India; Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600 034, India.
| |
Collapse
|
5
|
Verbruggen B, Bickley LK, Santos EM, Tyler CR, Stentiford GD, Bateman KS, van Aerle R. De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics 2015; 16:458. [PMID: 26076827 PMCID: PMC4469326 DOI: 10.1186/s12864-015-1667-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However, the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing technologies, and applied this to assemble information on the innate immune system in this species. Results We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence homology to immune system components in other organisms, we show both the presence of transcripts for a series of known pathogen recognition receptors and response proteins that form part of the innate immune system, and transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways. Conclusions We have produced an assembled transcriptome for C. maenas that provides a significant molecular resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of known targets and functional pathways that form part of their innate immune system and illustrate tissue specific differences in their expression patterns. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1667-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas Verbruggen
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Lisa K Bickley
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Grant D Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| | - Kelly S Bateman
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| | - Ronny van Aerle
- Aquatic Health and Hygiene Division, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| |
Collapse
|
6
|
Review of the RNA Interference Pathway in Molluscs Including Some Possibilities for Use in Bivalves in Aquaculture. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2015. [DOI: 10.3390/jmse3010087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Gene silencing in crustaceans: from basic research to biotechnologies. Genes (Basel) 2013; 4:620-45. [PMID: 24705266 PMCID: PMC3927571 DOI: 10.3390/genes4040620] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/14/2013] [Accepted: 10/08/2013] [Indexed: 11/16/2022] Open
Abstract
Gene silencing through RNA interference (RNAi) is gaining momentum for crustaceans, both in basic research and for commercial development. RNAi has proven instrumental in a growing number of crustacean species, revealing the functionality of novel crustacean genes essential among others to development, growth, metabolism and reproduction. Extensive studies have also been done on silencing of viral transcripts in crustaceans, contributing to the understanding of the defense mechanisms of crustaceans and strategies employed by viruses to overcome these. The first practical use of gene silencing in aquaculture industry has been recently achieved, through manipulation of a crustacean insulin-like androgenic gland hormone. This review summarizes the advancements in the use of RNAi in crustaceans, and assesses the advantages of this method, as well as the current hurdles that hinder its large-scale practice.
Collapse
|
8
|
La Fauce K, Owens L. Suppression of Penaeus merguiensis densovirus following oral delivery of live bacteria expressing dsRNA in the house cricket (Acheta domesticus) model. J Invertebr Pathol 2012. [PMID: 23201454 DOI: 10.1016/j.jip.2012.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Penaeus merguiensis densovirus (PmergDNV) is a serious pathogen of the banana prawn, Penaeus merguiensis leading to at least 28% production loss due to reduced growth rates and mortality of juveniles. In the present study, we reduced PmergDNV titres and subsequent mortality by feeding Acheta domesticus (previously determined as an appropriate animal model for P. merguiensis) with dsRNA specific to the capsid protein by mixing it into their food. Feeding A. domesticus with PmergDNV-specific dsRNA in advance of viral challenge increased their longevity, decreased mortality by 84.4% and reduced viral loads 24-fold below the threshold level required for mortality. Mortalities and viral loads were significantly (both P < 0.001) lower in treatments challenged with PmergDNV following exposure to bacterially expressed PmergDNV-dsRNA. This is the first study to demonstrate gene silencing via RNAi against PmergDNV in vivo through oral administration of live bacteria expressing dsRNA in a model system.
Collapse
Affiliation(s)
- Kathy La Fauce
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, QLD 4811, Australia.
| | | |
Collapse
|