1
|
Pomerleau V, Nicolas VR, Jurkovic CM, Faucheux N, Lauzon MA, Boisvert FM, Perreault N. FOXL1+ Telocytes in mouse colon orchestrate extracellular matrix biodynamics and wound repair resolution. J Proteomics 2023; 271:104755. [PMID: 36272709 DOI: 10.1016/j.jprot.2022.104755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Recent studies have identified FoxL1+-telocytes (TCFoxL1+) as key players in gut epithelial-mesenchymal interactions which can determine the colonic microenvironment. Bone morphogenetic protein signaling disruption in TCFoxL1+ alters the physical and cellular microenvironment and leads to colon pathophysiology. This suggests a role for TCFoxL1+ in stromagenesis, but it is hard to identify the specific contribution of TCFoxL1+ when analyzing whole tissue profiling studies. We performed ex vivo deconstruction of control and BmpR1a△FoxL1+ colon samples, isolated the mesenchyme-enriched fractions, and determined the protein composition of the in vivo extracellular matrix (ECM) to analyze microenvironment variation. Matrisomic analysis of mesenchyme fractions revealed modulations in ECM proteins with functions associated with innate immunity, epithelial wound healing, and the collagen network. These results show that TCFoxL1+ is critical in orchestrating the biodynamics of the colon ECM. TCFoxL1+ disfunction reprograms the gut's microenvironment and drives the intestinal epithelium toward colonic pathologies. SIGNIFICANCE: In this study, the method that was elected to isolate ECM proteins might not encompass the full extent of ECM proteins in a tissue, due to the protocol chosen, as this protocol by Naba et al., targets more the insoluble part of the matrisome and eliminates the more soluble components in the first steps. However, this ECM-enrichment strategy represents an improvement and interesting avenue to study ECM proteins in the colon compared to total tissue analysis with a background of abundant cellular protein. Thus, the matrisomic approach presented in this study, and its target validation delivered a broader evaluation of the matrix remodeling occurring in the colonic sub-epithelial mesenchyme of the BmpR1a△FoxL1+ mouse model.
Collapse
Affiliation(s)
- Véronique Pomerleau
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vilcy Reyes Nicolas
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Carla-Marie Jurkovic
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Faucheux
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc-Antoine Lauzon
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - François-Michel Boisvert
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Perreault
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
González-Duque MI, Hernández-Martínez JD, Fontanilla MR, Muñoz-Medina SE. Treatment with type-I collagen scaffolds in patients with venous ulcers. Case report. CASE REPORTS 2020. [DOI: 10.15446/cr.v6n2.83815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Chronic venous insufficiency affects about 5% of the global adult population. Venous leg ulcers are one of the most frequent complications of this pathology, with a global prevalence of 2%. This disease affects both the quality of life of patients and, due to the high cost of the treatment, the health system. Compressive therapy and moist wound healing have been the gold standard treatment. However, when complications occur, they may not be effective.Case report: This is the case of a 66-year-old female patient with venous ulcers on her lower limbs and symptoms of fever and local pain that did not respond to conventional therapies. The patient was treated with a new dermal substitute made of an acellular type-I collagen membrane, which promotes the closure of the ulcer by stimulating the replacement of injured tissue with tissue similar to the healthy one. The condition of the patient improved at 16 weeks, and after 8 months of treatment there was no recurrence of the lesions.Conclusions: Acellular type-I collagen membrane developed by the Tissue Engineering Working Group of the Department of Pharmacy of the Universidad Nacional de Colombia is effective in treating venous ulcers of the lower limbs. Its low cost facilitates the access of the whole population to therapies based on its application.
Collapse
|
3
|
Li M, Ma J, Gao Y, Dong M, Zheng Z, Li Y, Tan R, She Z, Yang L. Epithelial differentiation of human adipose-derived stem cells (hASCs) undergoing three-dimensional (3D) cultivation with collagen sponge scaffold (CSS) via an indirect co-culture strategy. Stem Cell Res Ther 2020; 11:141. [PMID: 32234069 PMCID: PMC7110797 DOI: 10.1186/s13287-020-01645-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cultivation with biomaterials was proposed to facilitate stem cell epithelial differentiation for wound healing. However, whether human adipose-derived stem cells (hASCs) on collagen sponge scaffold (CSS) better differentiate to keratinocytes remains unclear. METHODS 3D cultivation with CSS on hASC epidermal differentiation co-cultured with HaCaT cells at air-liquid interface (ALI) was compared with two-dimensional (2D) form and cultivation without "co-culture" or "ALI." Cellular morphology, cell adhesion, and growth condition were evaluated, followed by the protein and gene expression of keratin 14 (K14, keratinocyte specific marker). RESULTS Typical cobblestone morphology of keratinocytes was remarkably observed in co-cultured hASCs at ALI, but those seeded on the CSS exhibited more keratinocyte-like cells under an invert microscope and scanning electron microscope. Desired cell adhesion and proliferation were confirmed in 3D differentiation groups by rhodamine-labeled phalloidin staining, consistent with H&E staining. Compared with those cultured in 2D culture system or without "ALI," immunofluorescence staining and gene expression analysis revealed hASCs co-cultured over CSS expressed K14 at higher levels at day 15. CONCLUSIONS CSS is positive to promote epithelial differentiation of hASCs, which will foster a deeper understanding of artificial dermis in skin wound healing and regeneration.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Mengru Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Yuchen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Rongwei Tan
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Zhending She
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
4
|
Moreira HR, da Silva LP, Reis RL, Marques AP. Tailoring Gellan Gum Spongy-Like Hydrogels' Microstructure by Controlling Freezing Parameters. Polymers (Basel) 2020; 12:E329. [PMID: 32033252 PMCID: PMC7077413 DOI: 10.3390/polym12020329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
Gellan gum (GG) spongy-like hydrogels have been explored for different tissue engineering (TE) applications owing to their highly attractive hydrogel-like features, and improved mechanical resilience and cell performance. Although the whole process for the preparation of these materials is well-defined, we hypothesized that variations occurring during the freezing step lead to batch-to-batch discrepancies. Aiming to address this issue, two freezing devices were tested, to prepare GG spongy-like hydrogels in a more reproducible way. The cooling and freezing rates, the nucleation time and temperature, and the end freezing time were determined at different freezing temperatures (-20, -80, and -210 °C). The efficacy of the devices was assessed by analyzing the physicochemical, mechanical, and biological properties of different formulations. The cooling rate and freezing rate varied between 0.1 and 128 °C/min, depending on the temperature used and the device. The properties of spongy-like hydrogels prepared with the tested devices showed lower standard deviation in comparison to those prepared with the standard process, due to the slower freezing rate of the hydrogels. However, with this method, mean pore size was significantly lower than that with the standard method. Cell entrapment, adhesion, and viability were not affected as demonstrated with human dermal fibroblasts. This work confirmed that batch-to-batch variations are mostly due to the freezing step and that the tested devices allow fine tuning of the scaffolds' structure and properties.
Collapse
Affiliation(s)
- Helena R. Moreira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Lucília P. da Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
5
|
Nong LM, Zhou D, Zheng D, Jiang YQ, Xu NW, Zhao GY, Wei H, Zhou SY, Han H, Han L. The effect of different cross-linking conditions of EDC/NHS on type II collagen scaffolds: an in vitro evaluation. Cell Tissue Bank 2019; 20:557-568. [PMID: 31583486 DOI: 10.1007/s10561-019-09790-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
The purpose of this paper is to analyze the properties of porcine cartilage type II collagen scaffolds crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy-succinamide (EDC/NHS) under different conditions. The porous EDC/NHS-crosslinked scaffolds were obtained through a two-step freeze-drying process. To determine the optimal crosslinking condition, we used different solvents and various crosslinking temperatures to prepare the scaffolds. Three crosslinking solutions were prepared with different solvents, photographs were taken with a flash in the darkroom, and light transmission was observed. Type II collagen was crosslinked on a horizontal shaker at a speed of 60 r/min according to the above grouping conditions, and then the structural change of the scaffold in each group was observed. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, tests were also carried out by immersion of the scaffolds in a PBS solution and digestion in type II collagenase, respectively. The influence of the scaffolds on the proliferation of chondrocytes was assessed by the methyl thiazolyl tetrazolium colorimetric assay. The morphology of the crosslinked scaffolds cocultured with chondrocytes was characterized by a scanning electron microscope. The results proved that 75% alcohol and a crosslinking temperature of 37 °C are recommended. Collagen fibrils are more densely packed after crosslinking with EDC/NHS and have a more uniform structure than that of noncrosslinked ones. The EDC-crosslinked scaffolds possessed excellent mechanical property and biocompatibility.
Collapse
Affiliation(s)
- Lu-Ming Nong
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Dong Zhou
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Dong Zheng
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Yu-Qing Jiang
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Nan-Wei Xu
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Gong-Yin Zhao
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Hui Wei
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Si-Yuan Zhou
- Laboratory Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Hui Han
- General Surgery Department, Huaiyin Hospital of Huai'an City, Huai'an, 223300, Jiangsu Province, China
| | - Long Han
- Orthopedics Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China.
| |
Collapse
|
6
|
Evaluation of collagen type I scaffolds including gelatin-collagen microparticles and Aloe vera in a model of full-thickness skin wound. Drug Deliv Transl Res 2018; 9:25-36. [DOI: 10.1007/s13346-018-00595-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Casadiegos S, Bustos RH, Fontanilla MR. Comparative evaluation of healing biomarkers in skin wound exudates using a nanobiosensor and histological analysis of full-thickness skin wounds grafted with multidirectional or unidirectional artificial dermis. J Tissue Eng Regen Med 2018; 12:2299-2308. [PMID: 30350342 DOI: 10.1002/term.2762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/02/2018] [Accepted: 10/18/2018] [Indexed: 11/11/2022]
Abstract
Analysis of factors that play a role on the healing process in exudates from skin wounds might shed light on the effect that grafted artificial tissue has in wound regeneration and repair. The first objective of this work was to standardize an optic surface plasmon resonance method based on self-assembled monolayers to quantify healing mediator factors (angiopoietin-2, epidermal growth factor, tumour necrosis factor-α, transforming growth factor-β1, and vascular endothelial growth factor) in wound exudates. Optimal conditions for self-assembling of alkanethiol monolayers, immobilization of antibodies antifactors, and regeneration of sensor surfaces were established. A second objective was to compare healing of wounds grafted with artificial dermis with wounds left to heal by secondary intention (control) in a lagomorph model of full-thickness skin wound. Each animal included in this study had a control wound and an identical contralateral wound grafted with artificial dermis that was made by seeding autologous skin fibroblasts into unidirectional or multidirectional collagen type I scaffolds. Histological and histomorphometric analyses were carried out when animals were sacrificed, in addition to quantifying the factors in the exudates of wounds sampled 3 days after surgery. There were significant differences between the concentrations of evaluated factors in the exudates from grafted and control wounds. This finding coincides with differences observed in the histological and histomorphometric analyses of repaired tissue formed in treated and control wounds.
Collapse
Affiliation(s)
- Sergio Casadiegos
- Tissue Engineering Group, Department of Pharmacy, National University of Colombia, Bogotá, Colombia
| | - Rosa Helena Bustos
- Tissue Engineering Group, Department of Pharmacy, National University of Colombia, Bogotá, Colombia
| | - Marta R Fontanilla
- Tissue Engineering Group, Department of Pharmacy, National University of Colombia, Bogotá, Colombia
| |
Collapse
|