1
|
Aghili ZS, Magnani M, Ghatrehsamani M, Nourian Dehkordi A, Mirzaei SA, Banitalebi Dehkordi M. Intelligent berberine-loaded erythrocytes attenuated inflammatory cytokine productions in macrophages. Sci Rep 2024; 14:9381. [PMID: 38654085 DOI: 10.1038/s41598-024-60103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Erythrocytes are impressive tools for drug delivery, especially to macrophages. Therefore, berberine was loaded into erythrocytes using both hypotonic pre-swelling and endocytosis methods to target macrophages. Physicochemical and kinetic parameters of the resulting carrier cells, such as drug loading/release kinetics, osmotic fragility, and hematological indices, were determined. Drug loading was optimized for the study using Taguchi experimental design and lab experiments. Loaded erythrocytes were targeted to macrophages using ZnCl2 and bis-sulfosuccinimidyl-suberate, and targeting was evaluated using flow cytometry and Wright-Giemsa staining. Differentiated macrophages were stimulated with lipopolysaccharide, and the inflammatory profiles of macrophages were evaluated using ELISA, western blotting, and real-time PCR. Findings indicated that the endocytosis method is preferred due to its low impact on the erythrocyte's structural integrity. Maximum loading achieved (1386.68 ± 22.43 μg/ml) at 1500 μg/ml berberine treatment at 37 °C for 2 h. Berberine successfully inhibited NF-κB translation in macrophages, and inflammatory response markers such as IL-1β, IL-8, IL-23, and TNF-α were decreased by approximately ninefold, sixfold, twofold, eightfold, and twofold, respectively, compared to the LPS-treated macrophages. It was concluded that berberine-loaded erythrocytes can effectively target macrophages and modulate the inflammatory response.
Collapse
Affiliation(s)
- Zahra Sadat Aghili
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, PU, Italy
| | - Mehdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azar Nourian Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mehdi Banitalebi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Mishra AK, Banday S, Bharadwaj R, Ali A, Rashid R, Kulshreshtha A, Malonia SK. Macrophages as a Potential Immunotherapeutic Target in Solid Cancers. Vaccines (Basel) 2022; 11:55. [PMID: 36679900 PMCID: PMC9863216 DOI: 10.3390/vaccines11010055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The revolution in cancer immunotherapy over the last few decades has resulted in a paradigm shift in the clinical care of cancer. Most of the cancer immunotherapeutic regimens approved so far have relied on modulating the adaptive immune system. In recent years, strategies and approaches targeting the components of innate immunity have become widely recognized for their efficacy in targeting solid cancers. Macrophages are effector cells of the innate immune system, which can play a crucial role in the generation of anti-tumor immunity through their ability to phagocytose cancer cells and present tumor antigens to the cells of adaptive immunity. However, the macrophages that are recruited to the tumor microenvironment predominantly play pro-tumorigenic roles. Several strategies targeting pro-tumorigenic functions and harnessing the anti-tumorigenic properties of macrophages have shown promising results in preclinical studies, and a few of them have also advanced to clinical trials. In this review, we present a comprehensive overview of the pathobiology of TAMs and their role in the progression of solid malignancies. We discuss various mechanisms through which TAMs promote tumor progression, such as inflammation, genomic instability, tumor growth, cancer stem cell formation, angiogenesis, EMT and metastasis, tissue remodeling, and immunosuppression, etc. In addition, we also discuss potential therapeutic strategies for targeting TAMs and explore how macrophages can be used as a tool for next-generation immunotherapy for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ravi Bharadwaj
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Romana Rashid
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ankur Kulshreshtha
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Jing F, Liu X, Chen X, Wu F, Gao Q. Tailoring biomaterials and applications targeting tumor-associated macrophages in cancers. Front Immunol 2022; 13:1049164. [PMID: 36439188 PMCID: PMC9691967 DOI: 10.3389/fimmu.2022.1049164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/25/2022] [Indexed: 04/04/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a critical role in supporting tumor growth and metastasis, taming host immunosurveillance, and augmenting therapeutic resistance. As the current treatment paradigms for cancers are generally insufficient to exterminate cancer cells, anti-cancer therapeutic strategies targeting TAMs have been developed. Since TAMs are highly heterogeneous and the pro-tumoral functions are mediated by phenotypes with canonical surface markers, TAM-associated materials exert anti-tumor functions by either inhibiting polarization to the pro-tumoral phenotype or decreasing the abundance of TAMs. Furthermore, TAMs in association with the immunosuppressive tumor microenvironment (TME) and tumor immunity have been extensively exploited in mounting evidence, and could act as carriers or accessory cells of anti-tumor biomaterials. Recently, a variety of TAM-based materials with the capacity to target and eliminate cancer cells have been increasingly developed for basic research and clinical practice. As various TAM-based biomaterials, including antibodies, nanoparticles, RNAs, etc., have been shown to have potential anti-tumor effects reversing the TME, in this review, we systematically summarize the current studies to fully interpret the specific properties and various effects of TAM-related biomaterials, highlighting the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-cancer therapy.
Collapse
Affiliation(s)
- Fangqi Jing
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinghong Gao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li M, He L, Zhu J, Zhang P, Liang S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 2022; 12:85. [PMID: 35672862 PMCID: PMC9172100 DOI: 10.1186/s13578-022-00823-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/29/2022] [Indexed: 02/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant, nearly accounting for 30–50% of stromal cells in the tumor microenvironment. TAMs exhibit an immunosuppressive M2-like phenotype in advanced cancer, which plays a crucial role in tumor growth, invasion and migration, angiogenesis and immunosuppression. Consequently, the TAM-targeting therapies are particularly of significance in anti-cancer strategies. The application of TAMs as anti-cancer targets is expected to break through traditional tumor-associated therapies and achieves favorable clinical effect. However, the heterogeneity of TAMs makes the strategy of targeting TAMs variable and uncertain. Discovering the subset specificity of TAMs might be a future option for targeting TAMs therapy. Herein, the review focuses on highlighting the different modalities to modulate TAM’s functions, including promoting the phagocytosis of TAMs, TAMs depletion, blocking TAMs recruitment, TAMs reprogramming and suppressing immunosuppressive tumor microenvironment. We also discuss about several ways to improve the efficacy of TAM-targeting therapy from the perspective of combination therapy and specificity of TAMs subgroups.
Collapse
Affiliation(s)
- Mengjun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Linye He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.,Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.
| |
Collapse
|
5
|
Abstract
Tumor-associated macrophages (TAMs) are abundant, nearly accounting for 30-50% of stromal cells in the tumor microenvironment. TAMs exhibit an immunosuppressive M2-like phenotype in advanced cancer, which plays a crucial role in tumor growth, invasion and migration, angiogenesis and immunosuppression. Consequently, the TAM-targeting therapies are particularly of significance in anti-cancer strategies. The application of TAMs as anti-cancer targets is expected to break through traditional tumor-associated therapies and achieves favorable clinical effect. However, the heterogeneity of TAMs makes the strategy of targeting TAMs variable and uncertain. Discovering the subset specificity of TAMs might be a future option for targeting TAMs therapy. Herein, the review focuses on highlighting the different modalities to modulate TAM's functions, including promoting the phagocytosis of TAMs, TAMs depletion, blocking TAMs recruitment, TAMs reprogramming and suppressing immunosuppressive tumor microenvironment. We also discuss about several ways to improve the efficacy of TAM-targeting therapy from the perspective of combination therapy and specificity of TAMs subgroups.
Collapse
Affiliation(s)
- Mengjun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Linye He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.
| |
Collapse
|
6
|
Kadomoto S, Izumi K, Mizokami A. Macrophage Polarity and Disease Control. Int J Mol Sci 2021; 23:144. [PMID: 35008577 PMCID: PMC8745226 DOI: 10.3390/ijms23010144] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages are present in most human tissues and have very diverse functions. Activated macrophages are usually divided into two phenotypes, M1 macrophages and M2 macrophages, which are altered by various factors such as microorganisms, tissue microenvironment, and cytokine signals. Macrophage polarity is very important for infections, inflammatory diseases, and malignancies; its management can be key in the prevention and treatment of diseases. In this review, we assess the current state of knowledge on macrophage polarity and report on its prospects as a therapeutic target.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan; (S.K.); (A.M.)
| | | |
Collapse
|
7
|
Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. NANO-MICRO LETTERS 2021; 13:92. [PMID: 34138315 PMCID: PMC8006526 DOI: 10.1007/s40820-021-00622-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 05/02/2023]
Abstract
Although current anticancer immunotherapies using immune checkpoint inhibitors (ICIs) have been reported with a high clinical success rate, numerous patients still bear 'cold' tumors with insufficient T cell infiltration and low immunogenicity, responding poorly to ICI therapy. Considering the advancements in precision medicine, in-depth mechanism studies on the tumor immune microenvironment (TIME) among cold tumors are required to improve the treatment for these patients. Nanomedicine has emerged as a promising drug delivery system in anticancer immunotherapy, activates immune function, modulates the TIME, and has been applied in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosuppressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well as a brief talk about the feasibility of clinical translation.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|