1
|
Xu Y, Chen Y, Tan JJ, Ooi JP, Guo Z. Intrapericardial Administration to Achieve Localized and Targeted Treatment for Cardiac Disease. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10553-3. [PMID: 39164600 DOI: 10.1007/s12265-024-10553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Intrapericardial administration has been proposed as an alternative delivery route of pharmacological agents via the bilaminar sac of pericardium surrounding the heart. To date, intrapericardial administration has entailed the localized administration of a broad spectrum of therapeutic agents. These agents include stem cells, extracellular matrix, growth factor, drugs, bioactive materials, and genetic materials, to the heart and coronary arteries. The route not only overcomes the limitations associated with traditional systemic administration methods, but also presents multiple intrinsic advantages over the other approaches, allowing greater therapeutic actions. Intrapericardial administration exhibits versatility in addressing certain cardiac conditions and ongoing research in this field certainly holds promise for further innovations and advancements to improve cardiac treatment. Thus, this review discusses the anatomy and physiology of the pericardium, the intrapericardial administration access routes, the recent application of intrapericardial delivery in the context of cardiac repair as well as the challenges associated with the approach.
Collapse
Affiliation(s)
- Yaping Xu
- USM-ALPS Joint Laboratory for Heart Research, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
- Henan Key Laboratory of Cardiac Reconstruction and Heart Transplantation, Zhengzhou the Seventh People's Hospital, Zhengzhou, 45300, Henan, P. R. China
| | - Yan Chen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - Jun Jie Tan
- USM-ALPS Joint Laboratory for Heart Research, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Jer Ping Ooi
- USM-ALPS Joint Laboratory for Heart Research, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Reconstruction and Heart Transplantation, Zhengzhou the Seventh People's Hospital, Zhengzhou, 45300, Henan, P. R. China.
| |
Collapse
|
2
|
Nawaz W, Naveed M, Zhang J, Noreen S, Saeed M, Sembatya KR, Ihsan AU, Mohammad IS, Wang G, Zhou X. Cardioprotective effect of silicon-built restraint device (ASD), for left ventricular remodeling in rat heart failure model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:42. [PMID: 35536369 PMCID: PMC9090860 DOI: 10.1007/s10856-022-06663-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
This study aims to evaluate the feasibility and cardio-protective effects of biocompatible silicon-built restraint device (ASD) in the rat's heart failure (HF) model. The performance and compliance characteristics of the ASD device were assessed in vitro by adopting a pneumatic drive and ball burst test. Sprague-Dawley (SD) rats were divided into four groups (n = 6); control, HF, HF + CSD, and HF + ASD groups, respectively. Heart failure was developed by left anterior descending (LAD) coronary artery ligation in all groups except the control group. The ASD and CSD devices were implanted in the heart of HF + ASD and HF + CSD groups, respectively. The ASD's functional and expansion ability was found to be safe and suitable for attenuating ventricular remodeling. ASD-treated rats showed normal heart rhythm, demonstrated by smooth -ST and asymmetrical T-wave. At the same time, hemodynamic parameters of the HF + ASD group improved systolic and diastolic functions, reducing ventricular wall stress, which indicated reverse remodeling. The BNP values were reduced in the HF + ASD group, which confirmed ASD feasibility and reversed remodeling at a molecular level. Furthermore, the HF + ASD group with no fibrosis suggests that ASD has significant curative effects on the heart muscles. In conclusion, ASD was found to be a promising restraint therapy than the previously standard restraint therapies. Stepwise ASD fabrication process (a) 3D computer model of ASD was generated by using Rhinoceros 5.0 software (b) 3D blue wax model of ASD (c) Silicon was prepared by mixing the solutions (as per manufacturer instruction) (d) Blue wax model of ASD was immersed into liquid Silicon (e) ASD model was put into the oven for 3 hours at 50 °C. (f) Blue wax started melting from the ASD model (g) ASD model was built from pure silicon (h) Two access lines were linked to the ASD device, which was connected with an implantable catheter (Port-a-cath), scale bar 100 µm. (Nikon Ldx 2.0).
Collapse
Affiliation(s)
- Waqas Nawaz
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing University, Nanjing, China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing University, Nanjing, China
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Kiganda Raymond Sembatya
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Awais Ullah Ihsan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Gang Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, China.
- Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Ho HMK, Craig DQM, Day RM. Access routes, devices and guidance methods for intrapericardial delivery in cardiac conditions. Trends Cardiovasc Med 2021; 32:206-218. [PMID: 33892101 DOI: 10.1016/j.tcm.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
Drug deposition into the intrapericardial space is favourable for achieving localised effects and targeted cardiac delivery owing to its proximity to the myocardium as well as facilitating optimised pharmacokinetic profiles and a reduction in systemic side effects. Access to the pericardium requires invasive procedures but the risks associated with this have been reduced with technological advances, such as combining transatrial and subxiphoid access with different guidance methods. A variety of introducer devices, ranging from needles to loop-catheters, have also been developed and validated in pre-clinical studies investigating intrapericardial delivery of therapeutic agents. Access techniques are generally well-tolerated, self-limiting and safe, although some rare complications associated with certain approaches have been reported. This review covers these access techniques and how they have been applied to the delivery of drugs, cells, and biologicals, demonstrating the potential of intrapericardial delivery for treatments in cardiac arrhythmia, vascular damage, and myocardial infarction.
Collapse
Affiliation(s)
- Hei Ming Kenneth Ho
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Centre for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Duncan Q M Craig
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Richard M Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
4
|
Liu Z, Naveed M, Baig MMFA, Mikrani R, Li C, Saeed M, Zhang Q, Farooq MA, Zubair HM, Xiaohui Z. Therapeutic approach for global myocardial injury using bone marrow-derived mesenchymal stem cells by cardiac support device in rats. Biomed Microdevices 2021; 23:5. [PMID: 33415464 DOI: 10.1007/s10544-020-00538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have been considered a promising therapeutic approach to cardiovascular disease. This study intends to compare the effect of BMSCs through a standard active cardiac support device (ASD) and intravenous injection on global myocardial injury induced by isoproterenol. BMSCs were cultured in vitro, and the transplanted cells were labeled with a fluorescent dye CM-Dil. Isoproterenol (ISO) was injected into the rats; 2 weeks later, the labeled cells were transplanted into ISO-induced heart-jury rats through the tail vein or ASD device for 5 days. The rats were sacrificed on the first day, the third day, and the fifth day after transplantation to observe the distribution of cells in the myocardium by fluorescence microscopy. The hemodynamic indexes of the left ventricle were measured before sacrificing. H&E staining and Masson's trichrome staining were used to evaluate the cardiac histopathology. In the ASD groups, after 3 days of transplantation, there were a large number of BMSCs on the epicardial surface, and after 5 days of transplantation, BMSCs were widely distributed in the ventricular muscle. But in the intravenous injection group, there were no labeled-BMSCs distributed. In the ASD + BMSCs-three days treated group and ASD + BMSCs -five days-treated group, left ventricular systolic pressure (LVSP), the maximum rate of left ventricular pressure rise (+dP/dt), the maximum rate of left ventricular pressure decline (-dP/dt) increased compared with model group and intravenous injection group (P < 0.05). By giving BMSCs through ASD device, cells can rapidly and widely distribute in the myocardium and significantly improve heart function.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China.,School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Asim Farooq
- Department of Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | | | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China. .,Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 2110017, People's Republic of China. .,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, Jiangsu Province, 210017, People's Republic of China.
| |
Collapse
|
5
|
Li C, Naveed M, Dar K, Liu Z, Baig MMFA, Lv R, Saeed M, Dingding C, Feng Y, Xiaohui Z. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. J Drug Target 2020; 29:235-248. [PMID: 32933319 DOI: 10.1080/1061186x.2020.1818761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most commonly used administration methods in clinics and life are oral administration, intravenous injection, and other systemic administration methods. Targeted administration must be an essential long-term development direction due to the limited availability and a high incidence of systemic side effects. Cardiovascular diseases (CVD) are the leading cause of death all over the world. Targeted drug delivery (TDD) methods with the heart as the target organ have developed rapidly and are diversified. This article reviews the research progress of various TDD methods around the world with a heart as the target organ. It is mainly divided into two parts: the targeting vector represented by nanoparticles and various TDD methods such as intracoronary injection, ventricular wall injection, pericardial injection, and implantable medical device therapy and put forward some suggestions on the development of targeting. Different TDD methods described in this paper have not been widely used in clinical practice, and some have not even completed preclinical studies. Targeted drug delivery still requires long-term efforts by many researchers to realize the true meaning of the heart. HIGHLIGHTS Targeted administration can achieve a better therapeutic effect and effectively reduce the occurrence of adverse reactions. Parenteral administration or medical device implantation can be used for targeted drug delivery. Combined with new dosage forms or new technologies, better-targeted therapy can be achieved. Clinical trials have confirmed the safety and effectiveness of several administration methods.
Collapse
Affiliation(s)
- Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,School of Pharmacy, Nanjing Medical University, Nanjing, P. R. China
| | - Kashif Dar
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China
| | - Rundong Lv
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chen Dingding
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yu Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, P. R. China.,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, P. R. China
| |
Collapse
|
6
|
Mikrani R, Li C, Naveed M, Li C, Baig MMFA, Zhang Q, Wang Y, Peng J, Zhao L, Zhou X. Pharmacokinetic Advantage of ASD Device Promote Drug Absorption through the Epicardium. Pharm Res 2020; 37:173. [DOI: 10.1007/s11095-020-02898-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023]
|
7
|
Liu Z, Mikrani R, Zubair HM, Taleb A, Naveed M, Baig MMFA, Zhang Q, Li C, Habib M, Cui X, Sembatya KR, Lei H, Zhou X. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. Eur J Pharmacol 2020; 876:173049. [PMID: 32142771 DOI: 10.1016/j.ejphar.2020.173049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
In the beginning stage of heart disease, the blockage of blood flow frequently occurs due to the persistent damage and even death of myocardium. Cicatricial tissue developed after the death of myocardium can affect heart function, which ultimately leads to heart failure. In recent years, several studies carried out about the use of stem cells such as embryonic, pluripotent, cardiac and bone marrow-derived stem cells as well as myoblasts to repair injured myocardium. Current studies focus more on finding appropriate measures to enhance cell homing and survival in order to increase paracrine function. Until now, there is no universal delivery route for mesenchymal stem cells (MSCs) for different diseases. In this review, we summarize the advantages and challenges of the systemic and local pathways of MSC delivery. In addition, we also describe some advanced measures of cell delivery to improve the efficiency of transplantation. The combination of cells and therapeutic substances could be the most reliable method, which allows donor cells to deliver sufficient amounts of paracrine factors and provide long-lasting effects. The cardiac support devices or tissue engineering techniques have the potential to facilitate the controlled release of stem cells on local tissue for a sustained period. A novel promising epicardial drug delivery system is highlighted here, which not only provides MSCs with a favorable environment to promote retention but also increases the contact area and a number of cells recruited in the heart muscle.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | | | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Mirza Muhammad Faran Asraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Murad Habib
- Department of Surgery, Ayub Teaching Hospital, Abbottabad, Pakistan
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Kiganda Raymond Sembatya
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Han Lei
- Department of Pharmacy, Jiangsu Worker Medical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 210017, PR China.
| |
Collapse
|