1
|
Kim J, Enkhtaivan K, Yang J, Niepa THR, Choi J. How could emerging nanomedicine-based tuberculosis treatments outperform conventional approaches? Nanomedicine (Lond) 2025:1-3. [PMID: 39877965 DOI: 10.1080/17435889.2025.2458447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
- Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | | | - Jihyuk Yang
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Tagbo H R Niepa
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, Republic of Korea
| |
Collapse
|
2
|
Elmanawy MA, Boraie N, Bakr BA, Makled S. Augmented ocular uptake and anti-inflammatory efficacy of decorated Genistein-loaded NLCs incorporated in in situ gel. Int J Pharm 2024; 662:124508. [PMID: 39053680 DOI: 10.1016/j.ijpharm.2024.124508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Genistein (Gen); a naturally occurring isoflavone, acts as a tyrosine kinase inhibitor and efficiently downregulates inflammatory cytokines, which are pivotal in eye inflammation. Also, Gen suffers from sparse ocular bioavailability due to poor solubility. In this work, nanostructured lipid carriers (NLCs) were successfully fabricated by using solid (stearic acid and compritol) and liquid (oleic acid) lipids. The optimized Gen-loaded NLCs showed a nanosize range of 140-246 nm, ≥ 98 % entrapment efficiency, and controlled release over 48 h. The ζ-potential of NLCs was increased from -27.3 mV to 25-27.4 mV due to surface modification with chitosan (CS) or eudragit RS100 (ERS 100). All NLCs showed prominent biocompatibility with enhanced cellular uptake on corneal stromal fibroblasts. Moreover, the different NLCs were incorporated into a mucoadhesive in situ gel. The optimized in situ gel (G9), containing 20 % poloxamers and 0.5 % hydroxyethyl cellulose, exhibited excellent gelling ability within 10.5 s, gelling temperature at 33.1 ± 0.6 ℃, spreadability diameter of 4.73 ± 0.12 cm, shear-thinning behavior, and 20 min ex vivo mucoadhesion time with drug release for 120 h. The in vivo results showed distinguished permeation and distribution potential for ocular delivery. In vivo anti-inflammatory effects after 3 days of treatment with CS-Gen-NLCs/G9 and ERS-Gen-NLCs/G9 revealed a downregulation of interleukin-6 levels in the cornea and retina compared to the untreated group. Our research highlights the promising anti-inflammatory potential of ERS-Gen-NLCs/G9 as an efficient, non-irritant Gen nanodelivery system for managing anterior and posterior ocular inflammation.
Collapse
Affiliation(s)
- Marwa A Elmanawy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
3
|
Makled S, Abbas H, Ali ME, Zewail M. Melatonin hyalurosomes in collagen thermosensitive gel as a potential repurposing approach for rheumatoid arthritis management via the intra-articular route. Int J Pharm 2024; 661:124449. [PMID: 38992734 DOI: 10.1016/j.ijpharm.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt.
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt
| |
Collapse
|
4
|
Nafee N, Gaber DM, Abouelfetouh A, Alseqely M, Empting M, Schneider M. Enzyme-Linked Lipid Nanocarriers for Coping Pseudomonal Pulmonary Infection. Would Nanocarriers Complement Biofilm Disruption or Pave Its Road? Int J Nanomedicine 2024; 19:3861-3890. [PMID: 38708178 PMCID: PMC11068056 DOI: 10.2147/ijn.s445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.
Collapse
Affiliation(s)
- Noha Nafee
- Department of Pharmaceutics, College of Pharmacy, Kuwait University, Safat, 13110, Kuwait
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Dina M Gaber
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 1029, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, 5060335, Egypt
| | - Mustafa Alseqely
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Antiviral and Antivirulence Drugs (AVID), Saarland University, Saarbrücken, 66123, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
5
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
6
|
Hagras NAE, Makled S, Sheta E, El-hawary MA, Mogahed NMFH. Potent efficiency of the novel nitazoxanide-loaded nanostructured lipid carriers against experimental cyclosporiasis. PLoS Negl Trop Dis 2023; 17:e0011845. [PMID: 38100538 PMCID: PMC10756555 DOI: 10.1371/journal.pntd.0011845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/29/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Cyclosporiasis is a ubiquitous infection caused by an obligate intracellular protozoan parasite known as Cyclospora cayetanensis (C. cayetanensis). The disease is characterized by severe diarrhea which may be regrettably fatal in immunosuppressed patients. The commercially available treatment options have either severe side effects or low efficiency. In the present study, the novel formula of nitazoxanide (NTZ)-loaded nanostructured lipid carriers (NLCs) was assessed for the first time for C. cayetanensis treatment in both immunocompetent and immunosuppressed mice in comparison to commercially available drugs (trimethoprim-sulfamethoxazole (TMP-SMX) and NTZ). Swiss Albino mice were orally infected by 104 sporulated oocysts. The experimental groups were treated with the gold standard TMP-SMX, NTZ, blank NLCs and NTZ-loaded NLCs. The results demonstrated that NTZ-loaded NLCs represented the highest significant parasite percent reduction of (>98% reduction) in both immunocompetent and immunosuppressed mice designating successful tissue penetration and avoiding recurrence of infection at the end of the study. Oocysts treated with NTZ-loaded NLCs demonstrated the most mutilated rapturing morphology via scanning electron microscope examination as well as representing the most profound improvement of the histopathological picture. In conclusion, NTZ-loaded NLCs exhibited the uppermost efficacy in the treatment of cyclosporiasis. The safe nature and the anti-parasitic effect of the novel formulation encourage its use as a powerful treatment for human cyclosporiasis.
Collapse
Affiliation(s)
- Nancy Abd-elkader Hagras
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | |
Collapse
|
7
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics 2023; 15:pharmaceutics15020393. [PMID: 36839715 PMCID: PMC9964171 DOI: 10.3390/pharmaceutics15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is currently the second deadliest infectious disease. Existing antitubercular therapies are long, complex, and have severe side effects that result in low patient compliance. In this context, nanosized drug delivery systems (DDSs) have the potential to optimize the treatment's efficiency while reducing its toxicity. Hundreds of publications illustrate the growing interest in this field. In this review, the main challenges related to the use of drug nanocarriers to fight TB are overviewed. Relevant publications regarding DDSs for the treatment of TB are classified according to the encapsulated drugs, from first-line to second-line drugs. The physicochemical and biological properties of the investigated formulations are listed. DDSs could simultaneously (i) optimize the therapy's antibacterial effects; (ii) reduce the doses; (iii) reduce the posology; (iv) diminish the toxicity; and as a global result, (v) mitigate the emergence of resistant strains. Moreover, we highlight that host-directed therapy using nanoparticles (NPs) is a recent promising trend. Although the research on nanosized DDSs for TB treatment is expanding, clinical applications have yet to be developed. Most studies are only dedicated to the development of new formulations, without the in vivo proof of concept. In the near future, it is expected that NPs prepared by "green" scalable methods, with intrinsic antibacterial properties and capable of co-encapsulating synergistic drugs, may find applications to fight TB.
Collapse
|
9
|
Quercetin Loaded Cationic Solid Lipid Nanoparticles in a Mucoadhesive In Situ Gel-A Novel Intravesical Therapy Tackling Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14112527. [PMID: 36432718 PMCID: PMC9695231 DOI: 10.3390/pharmaceutics14112527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The study aim was to develop an intravesical delivery system of quercetin for bladder cancer management in order to improve drug efficacy, attain a controlled release profile and extend the residence time inside the bladder. Either uncoated or chitosan coated quercetin-loaded solid lipid nanoparticles (SLNs) were prepared and evaluated in terms of colloidal, morphological and thermal characteristics. Drug encapsulation efficiency and its release behaviour were assessed. Furthermore, cytotoxicity of SLNs on T-24 cells was evaluated. Ex vivo studies were carried out using bovine bladder mucosa. Spherical SLNs (≈250 nm) ensured good entrapment efficiencies (EE > 97%) and sustained drug release up to 142 h. Cytotoxicity profile revealed concentration-dependent toxicity recording an IC50 in the range of 1.6−8.9 μg/mL quercetin. SLNs were further dispersed in in situ hydrogels comprising poloxamer 407 (20%) with mucoadhesive polymers. In situ gels exhibited acceptable gelation temperatures (around 25 °C) and long erosion time (24−27 h). SLNs loaded gels displayed remarkably enhanced retention on bladder tissues relative to SLNs dispersions. Coated SLNs exhibited better penetration abilities compared to uncoated ones, while coated SLNs dispersed in gel (G10C-St-QCT-SLNs-2) showed the highest penetration up to 350 μm. Hence, G10C-St-QCT-SLNs-2 could be considered as a platform for intravesical quercetin delivery.
Collapse
|
10
|
Naz FF, Shah KU, Niazi ZR, Zaman M, Lim V, Alfatama M. Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers (Basel) 2022; 14:2491. [PMID: 35746067 PMCID: PMC9230634 DOI: 10.3390/polym14122491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Rifampicin, a potent broad-spectrum antibiotic, remains the backbone of anti-tubercular therapy. However, it can cause severe hepatotoxicity when given orally. To overcome the limitations of the current oral therapy, this study designed inhalable spray-dried, rifampicin-loaded microparticles using aloe vera powder as an immune modulator, with varying concentrations of alginate and L-leucine. The microparticles were assessed for their physicochemical properties, in vitro drug release and aerodynamic behavior. The spray-dried powders were 2 to 4 µm in size with a percentage yield of 45 to 65%. The particles were nearly spherical with the tendency of agglomeration as depicted from Carr’s index (37 to 65) and Hausner’s ratios (>1.50). The drug content ranged from 0.24 to 0.39 mg/mg, with an association efficiency of 39.28 to 96.15%. The dissolution data depicts that the in vitro release of rifampicin from microparticles was significantly retarded with a higher L-leucine concentration in comparison to those formulations containing a higher sodium alginate concentration due to its hydrophobic nature. The aerodynamic data depicts that 60 to 70% of the aerosol mass was emitted from an inhaler with MMAD values of 1.44 to 1.60 µm and FPF of 43.22 to 55.70%. The higher FPF values with retarded in vitro release could allow sufficient time for the phagocytosis of synthesized microparticles by alveolar macrophages, thereby leading to the eradication of M. tuberculosis from these cells.
Collapse
Affiliation(s)
- Faiqa Falak Naz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Kifayat Ullah Shah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Zahid Rasul Niazi
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Mansoor Zaman
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| |
Collapse
|
11
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
12
|
Clathrate Hydrates of Organic Solvents as Auxiliary Intermediates in Pharmaceutical Research and Development: Improving Dissolution Behaviour of a New Anti-Tuberculosis Drug, Perchlozon. Pharmaceutics 2022; 14:pharmaceutics14030495. [PMID: 35335870 PMCID: PMC8954777 DOI: 10.3390/pharmaceutics14030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
There is an urgent need for new drugs to overcome the challenge of the ever-growing drug resistance towards tuberculosis. A new, highly efficient anti-tuberculosis drug, Perchlozone (thioureidoiminomethylpyridinium perchlorate, Pz), is only available in an oral dosage form, though injectable forms and inhalation solutions could be better alternatives, offering higher bioavailability. To produce such forms, nano- and micro-particles of APIs would need to be prepared as dispersions with carriers. We use this case study to illustrate the principles of selecting solvents and excipients when preparing such formulations. We justify the choice of water–THF (19.1 wt % THF) as solvent and mannitol as carrier to prepare formulations of Pz—a poorly soluble compound—that are suitable for injection or inhalation. The formulations could be prepared by conventional freeze-drying in vials, making the proposed method suitable for industrial scaling. A similar strategy for selecting the organic solvent and the excipient can be applied to other compounds with low water solubility.
Collapse
|
13
|
Rajput A, Mandlik S, Pokharkar V. Nanocarrier-Based Approaches for the Efficient Delivery of Anti-Tubercular Drugs and Vaccines for Management of Tuberculosis. Front Pharmacol 2021; 12:749945. [PMID: 34992530 PMCID: PMC8724553 DOI: 10.3389/fphar.2021.749945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Drug-resistant species of tuberculosis (TB), which spread faster than traditiona TB, is a severely infectious disease. The conventional drug therapy used in the management of tuberculosis has several challenges linked with adverse effects. Hence, nanotherapeutics served as an emerging technique to overcome problems associated with current treatment. Nanotherapeutics helps to overcome toxicity and poor solubility issues of several drugs used in the management of tuberculosis. Due to their diameter and surface chemistry, nanocarriers encapsulated with antimicrobial drugs are readily taken up by macrophages. Macrophages play a crucial role as they serve as target sites for active and passive targeting for nanocarriers. The surface of the nanocarriers is coated with ligand-specific receptors, which further enhances drug concentration locally and indicates the therapeutic potential of nanocarriers. This review highlights tuberculosis's current facts, figures, challenges associated with conventional treatment, different nanocarrier-based systems, and its application in vaccine development.
Collapse
Affiliation(s)
| | | | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
14
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
15
|
Alatorre-Barajas JA, Alcántar-Zavala E, Gil-Rivas MG, Estrada-Zavala E, Ochoa-Terán A, Gochi-Ponce Y, Montes-Ávila J, Cabrera A, Trujillo-Navarrete B, Rivera-Lugo YY, Alonso-Núñez G, Reynoso-Soto EA, Medina-Franco JL. Synthesis of covalent bonding MWCNT-oligoethylene linezolid conjugates and their antibacterial activity against bacterial strains. RSC Adv 2021; 11:28912-28924. [PMID: 35478546 PMCID: PMC9038137 DOI: 10.1039/d1ra04691h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, infectious diseases caused by drug-resistant bacteria have become especially important. Linezolid is an antibacterial drug active against clinically important Gram positive strains; however, resistance showed by these bacteria has been reported. Nanotechnology has improved a broad area of science, such as medicine, developing new drug delivery and transport systems. In this work, several covalently bounded conjugated nanomaterials were synthesized from multiwalled carbon nanotubes (MWCNTs), a different length oligoethylene chain (Sn), and two linezolid precursors (4 and 7), and they were evaluated in antibacterial assays. Interestingly, due to the intrinsic antibacterial activity of the amino-oligoethylene linezolid analogues, these conjugated nanomaterials showed significant antibacterial activity against various tested bacterial strains in a radial diffusion assay and microdilution method, including Gram negative strains as Escherichia coli (11 mm, 6.25 μg mL−1) and Salmonella typhi (14 mm, ≤0.78 μg mL−1), which are not inhibited by linezolid. The results show a significant effect of the oligoethylene chain length over the antibacterial activity. Molecular docking of amino-oligoethylene linezolid analogs shows a more favorable interaction of the S2-7 analog in the PTC of E. coli. New MWCNTs amino-oligoethylene linezolid conjugates having outstanding activity against Gram negative strains.![]()
Collapse
Affiliation(s)
- José A. Alatorre-Barajas
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Eleazar Alcántar-Zavala
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - M. Graciela Gil-Rivas
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Edgar Estrada-Zavala
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin, Mexico
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Y. Gochi-Ponce
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Julio Montes-Ávila
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin, Mexico
| | - Alberto Cabrera
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Balter Trujillo-Navarrete
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Yazmin Yorely Rivera-Lugo
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - Gabriel Alonso-Núñez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B. C, Mexico
| | - Edgar A. Reynoso-Soto
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/ IT de Tijuana, Tijuana, B. C., Mexico
| | - J. L. Medina-Franco
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
16
|
Macrophage metabolic reprogramming during chronic lung disease. Mucosal Immunol 2021; 14:282-295. [PMID: 33184475 PMCID: PMC7658438 DOI: 10.1038/s41385-020-00356-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 02/04/2023]
Abstract
Airway macrophages (AMs) play key roles in the maintenance of lung immune tolerance. Tissue tailored, highly specialised and strategically positioned, AMs are critical sentinels of lung homoeostasis. In the last decade, there has been a revolution in our understanding of how metabolism underlies key macrophage functions. While these initial observations were made during steady state or using in vitro polarised macrophages, recent studies have indicated that during many chronic lung diseases (CLDs), AMs adapt their metabolic profile to fit their local niche. By generating reactive oxygen species (ROS) for pathogen defence, utilising aerobic glycolysis to rapidly generate cytokines, and employing mitochondrial respiration to fuel inflammatory responses, AMs utilise metabolic reprogramming for host defence, although these changes may also support chronic pathology. This review focuses on how metabolic alterations underlie AM phenotype and function during CLDs. Particular emphasis is given to how our new understanding of AM metabolic plasticity may be exploited to develop AM-focused therapies.
Collapse
|