1
|
Matchimabura N, Praparatana R, Issarachot O, Oungbho K, Wiwattanapatapee R. Development of raft-forming liquid formulations loaded with ginger extract-solid dispersion for treatment of gastric ulceration. Heliyon 2024; 10:e31803. [PMID: 38841494 PMCID: PMC11152664 DOI: 10.1016/j.heliyon.2024.e31803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Raft-forming liquid formulations incorporating ginger extract solid dispersion (GE-SD) were developed to achieve prolonged delivery of 6-gingerol in the stomach and thus increase the effectiveness of gastric ulcer treatment. The solubility of 6-gingerol in 0.1 N HCl (pH 1.2) was maximized (15 mg/mL) by combining ginger extract with PVP K30 at 1:3 w/w ratio to produce a solid dispersion. The nature of GE-SD was confirmed by PXRD and FT-IR analysis. PXRD pattern showed miscibility of GE and PVP K30 in amorphous solid dispersion and the FT-IR spectra confirmed the formation of hydrogen bond between GE and PVP K30. GE-SD-loaded raft-forming liquids were prepared using sodium alginate as a gel former and HPMC as a release-controlling agent. The formulations exhibited rapid floating behavior in 0.1 N HCl (<30 s) and remained afloat on the surface over 8 h. The formed raft structures provided sufficient strength (>7.5 g) and allowed sustained release of more than 70 % of the 6-gingerol content over 8 h in 0.1 N HCl. Raft-forming formulations incorporating ginger extract demonstrated anti-inflammatory activity by inhibiting nitric oxide production in LPS-stimulated RAW 264.7 macrophage cells (IC50 = 5.13 ± 0.07 μg/mL). Exposure to the formulations also had a significant cytotoxic effect on AGS human gastric adenocarcinoma cells with an IC50 of 17.45 ± 0.29 μg/mL. In addition, the raft-forming formulations enhanced the migratory behavior of L929 mouse fibroblasts in the scratch wound model. Taken together, these findings reveal the benefits of gastro-retentive, GE-SD-loaded raft-forming liquid formulations for improving the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Nattawipa Matchimabura
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Rachanida Praparatana
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Ousanee Issarachot
- Department of Pharmacy Technician, Sirindhorn College of Public Health Trang, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Trang, 92110, Thailand
| | - Kwunchit Oungbho
- Medical Science Research and Innovation, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| |
Collapse
|
2
|
Turac IR, Porfire A, Iurian S, Crișan AG, Casian T, Iovanov R, Tomuță I. Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology. Pharmaceutics 2024; 16:790. [PMID: 38931911 PMCID: PMC11207633 DOI: 10.3390/pharmaceutics16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (I.-R.T.); (S.I.); (A.G.C.); (T.C.); (R.I.); (I.T.)
| | | | | | | | | | | |
Collapse
|
3
|
Wu N, Ye Z, Zhou K, Wang F, Lian C, Shang Y. Construction and Properties of O/W Liquid Crystal Nanoemulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7723-7732. [PMID: 38554094 DOI: 10.1021/acs.langmuir.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Liquid crystal emulsion is a new type of emulsion, in which the emulsifier molecules are located at the oil/water (O/W) interface and form a long-range ordered and short-range disordered lamellar liquid crystal. The lamellar liquid crystal formed by the emulsifier is similar to the skin stratum corneum lipid structure, which enables it to have a broad application prospect in the fields of cosmetics, pharmaceuticals, etc. In this work, a liquid crystal nanoemulsion was obtained by passing a liquid crystal emulsion stabilized by hydrogenated lecithin and phytosterol combination through a microfluidizer. The microstructure of the prepared liquid crystal nanoemulsion was investigated experimentally by dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering. The results have shown that the nanoemulsion inherited the liquid crystal emulsion property, namely, the long-range ordered and short-range disordered lamellar structure still existed at the oil/water interface even though they underwent extrusion, friction, and acceleration. At the same time, the underlying mechanisms of the existence of lamellar liquid crystal between the oil phase and the water phase for the nanoemulsion were explored theoretically by molecular dynamics simulations. The simulation results elucidated that the hydrogenated lecithin and phytosterol combination improved the flexibility of the bilayer structure composed of emulsifiers. The bilayers were the basic structure units of lamellar liquid crystals, and thus, the improved flexibility of bilayers provided insurance for the existence of lamellar liquid crystals with larger curvature around the oil droplets. In addition, the applicable properties of liquid crystal nanoemulsion were studied, and the results have shown that the liquid crystal nanoemulsion presented better slow-release and moisturizing properties than traditional nanoemulsions due to the existence of multilayers between oil and water phases. This work not only provides necessary information for the development and effective application of liquid crystal emulsions but also is helpful for in-depth understanding the inner properties of lamellar liquid crystal at molecular level.
Collapse
Affiliation(s)
- Na Wu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangfu Zhou
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, Yunnan 650106, China
| | - Feifei Wang
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, Yunnan 650106, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, Yunnan 650106, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Cirilli M, Maroni A, Moutaharrik S, Foppoli A, Ochoa E, Palugan L, Gazzaniga A, Cerea M. Organ-Retentive Osmotically Driven System (ORODS): A Novel Expandable Platform for in Situ Drug Delivery. Int J Pharm 2023; 644:123295. [PMID: 37544386 DOI: 10.1016/j.ijpharm.2023.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Drug delivery systems capable of being retained within hollow organs allow the entire drug dose to be delivered locally to the disease site or to absorption windows for improved systemic bioavailability. A novel Organ-Retentive Osmotically Driven System (ORODS) was here proposed, obtained by assembling drug-containing units having prolonged release kinetics with osmotic units used as increasing volume compartments. Particularly, prototypes having H-shape design were conceived, manufactured and evaluated. Such devices were assembled by manually inserting a tube made of regenerated cellulose (osmotic unit) into the holes of two perforated hydrophilic tableted matrices containing paracetamol as a tracer drug. The osmotic unit was obtained by folding and gluing a plain regenerated cellulose membrane and loading sodium chloride inside. When immersed in aqueous fluids, this compartment expanded to approximately 80% of its maximum volume within 30 min of testing, and a plateau was maintained for about 6 h. Subsequently, it slowly shrank to approximately 20% of the maximum volume in 24 h, which would allow for physiological emptying of the device from hollow organs. While expanding, the osmotic unit acquired stiffness. Drug release from H-shaped ORODSs conveyed in hard-gelatin capsules was shown to be prolonged for more than 24 h.
Collapse
Affiliation(s)
- Micol Cirilli
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Alessandra Maroni
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Saliha Moutaharrik
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy.
| | - Anastasia Foppoli
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Evelyn Ochoa
- Università degli Studi di Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Palugan
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| | - Matteo Cerea
- Università degli Studi di Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
5
|
Zhang R, Shi H, Li S, Zhang H, Zhang D, Wu A, Zhang C, Li C, Fu X, Chen S, Shi J, Tian Y, Wang S, Wang Y, Liu H. A double-layered gastric floating tablet for zero-order controlled release of dihydromyricetin: Design, development, and in vitro/in vivo evaluation. Int J Pharm 2023; 638:122929. [PMID: 37028570 DOI: 10.1016/j.ijpharm.2023.122929] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023]
Abstract
Dihydromyricetin (DHM) is an important natural flavonoid. However, most of DHM preparations have shown shortcomings such as low drug loading, poor drug stability, and/or large fluctuations in blood concentration. This study aimed to develop a gastric floating tablet with a double-layered structure for zero-order controlled release of DHM (DHM@GF-DLT). The final product DHM@GF-DLT showed a high average cumulative drug release at 24 h that best fit the zero-order model, and had a good floating ability in the stomach of the rabbit with a gastric retention time of over 24 h. The FTIR, DSC, and XRPD analyses indicated the good compatibility among the drug and the excipients in DHM@GF-DLT. The pharmacokinetic study revealed that DHM@GF-DLT could prolong the retention time of DHM, reduce the fluctuation of blood drug concentration, and enhance the bioavailability of DHM. The pharmacodynamic studies demonstrated that DHM@GF-DLT had a potent and long-term therapeutic effect on systemic inflammation in rabbits. Therefore, DHM@GF-DLT had the potential to serve as a promising anti-inflammatory agent and may develop into a once-a-day preparation, which was favorable to maintain a steady blood drug concentration and a long-term drug efficacy. Our research provided a promising development strategy for DHM and other natural products with a similar structure to DHM for improving their bioavailability and therapeutic effect.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Sifang Li
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Ailing Wu
- Department of Anesthesiology, The First People's Hospital of Neijiang, Neijiang, Sichuan, PR China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Jiaoyue Shi
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Yang Tian
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Sihan Wang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Yu Wang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China.
| |
Collapse
|
6
|
Vasquez-Martínez N, Guillen D, Moreno-Mendieta SA, Sanchez S, Rodríguez-Sanoja R. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Polymers (Basel) 2023; 15:1615. [PMID: 37050229 PMCID: PMC10097111 DOI: 10.3390/polym15071615] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| |
Collapse
|
7
|
Cheng Q, Xie M, Li G, Xue W, Zeng L, Ma D. Bacteria-Loaded Gastro-Retention Oral Delivery System for Alcohol Abuse. ACS Biomater Sci Eng 2023; 9:1460-1471. [PMID: 36848648 DOI: 10.1021/acsbiomaterials.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Alcohol abuse is harmful to human health, and many strategies have been developed to retard this harm through protecting liver or activating relative enzymes. In this study, a new strategy of decreasing the alcohol absorption directly depending on the dealcoholization by the bacteria in the upper gastrointestinal (GI) tract was reported. To realize this, a bacteria-loaded gastro-retention oral delivery system with pore structure was constructed through emulsification/internal gelation, which could relieve acute alcohol intoxication in mice successfully. It was found that this bacteria-loaded system kept the above 30% suspension ratio in the simulated gastric fluid for 4 min, displayed good protection effect for the bacteria, and decreased the alcohol concentration from 50 to 30% below within 24 h in vitro. The in vivo imaging results demonstrated that it remained in the upper GI tract until 24 h and reduced 41.9% alcohol absorption. The mice with oral administration of the bacteria-loaded system were found with normal gait, smooth coat, and less liver damage. Although the intestinal flora distribution was influenced slightly during the oral administration, it could restore to normal levels only one day after stopping oral administration quickly, suggesting good biosafety. In conclusion, these results revealed that the bacteria-loaded gastro-retention oral delivery system might intake alcohol molecules rapidly and has huge potential in the treatment of alcohol abuse.
Collapse
Affiliation(s)
- Qikun Cheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Mingzhi Xie
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Guowei Li
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lexiang Zeng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou 510120, People's Republic of China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
- Artificial Organs and Materials Engineering Research Center, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
8
|
Koryakova A, Shcherbakova V, Riabova O, Kazaishvili Y, Bolgarin R, Makarov V. Antituberculosis Macozinone Extended-Release Tablets To Enhance Bioavailability: a Pilot Pharmacokinetic Study in Beagle Dogs. Microbiol Spectr 2023; 11:e0232722. [PMID: 36507624 PMCID: PMC9927148 DOI: 10.1128/spectrum.02327-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Macozinone (MCZ; PBTZ169) is a first-in-class antituberculosis clinical-stage benzothiazinone-based drug candidate. Although its efficacy and safety have been strongly proven in several preclinical and clinical studies, the physicochemical and pharmacokinetic properties specific to MCZ required further optimization. Accordingly, this study aimed to evaluate the pharmacokinetics of MCZ administered as extended-release (ER) tablets F2 and F6 compared to immediate-release (IR) dispersible tablets for oral suspension. Oral absorption of MCZ from ER tablets was significantly different from that of IR tablets after a single oral dose in Beagle dogs in both fasted and fed states. In addition, food directly affects the bioavailability of MCZ from ER tablets but does not affect it from IR tablets. The high values of relative bioavailability of the prolonged-release tablets F2 and F6 compared to the IR tablets may indicate an indirect confirmation of their gastroretentive properties. Taken together, pharmacokinetic parameters have demonstrated that these MCZ oral formulations not just enhance drug bioavailability but may also improve regimen adherence by reducing MCZ dose frequency and reducing the development of drug resistance. IMPORTANCE Macozinone (MCZ) is the newest first-in-class clinical-stage benzothiazinone-based drug candidate for the treatment of tuberculosis. Yet, the extremely low oral bioavailability of MCZ, a major problem in clinical trials, needed to be addressed, and we are pleased to present our attempts to solve this issue. We report that extended-release tablets of MCZ significantly increased key pharmacokinetic parameters in the preclinical setting. We suggest that these MCZ oral formulations not just enhance drug bioavailability but may also improve regimen adherence by reducing MCZ dose frequency and reducing the development of drug resistance.
Collapse
Affiliation(s)
| | | | - Olga Riabova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | | | | | - Vadim Makarov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| |
Collapse
|
9
|
Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023; 15:pharmaceutics15020484. [PMID: 36839807 PMCID: PMC9960885 DOI: 10.3390/pharmaceutics15020484] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The oral route is the most preferred route for systemic and local drug delivery. However, the oral drug delivery system faces the harsh physiological and physicochemical environment of the gastrointestinal tract, which limits the bioavailability and targeted design of oral drug delivery system. Innovative pharmaceutical approaches including nanoparticulate formulations, biomimetic drug formulations, and microfabricated devices have been explored to optimize drug targeting and bioavailability. In this review, the anatomical factors, biochemical factors, and physiology factors that influence delivering drug via oral route are discussed and recent advance in conventional and novel oral drug delivery approaches for improving drug bioavailability and targeting ability are highlighted. We also address the challenges and opportunities of oral drug delivery systems in future.
Collapse
|
10
|
Blynskaya EV, Tishkov SV, Vinogradov VP, Alekseev KV, Marakhova AI, Vetcher AA. Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14122779. [PMID: 36559272 PMCID: PMC9786229 DOI: 10.3390/pharmaceutics14122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The combination of targeted transport and improvement of the release profile of the active pharmaceutical ingredient (API) is a current trend in the development of oral medicinal products (MP). A well-known way to implement this concept is to obtain floating gastroretentive delivery systems that provide a long stay of the dosage form (DF) on the surface of the stomach contents. The nomenclature of excipients (Es) of a polymeric nature used in the technology of obtaining floating drug delivery systems (FDDS) is discussed. Based on the data presented in research papers, the most widely used groups of polymers, their properties, and their purpose in various technological approaches to achieving buoyancy have been determined. In addition, ways to modify the release of APIs in these systems and the Es used for this are described. The current trends in the use of polymers in the technology of floating dosage forms (FDF) and generalized conclusions about the prospects of this direction are outlined.
Collapse
Affiliation(s)
- Evgenia V. Blynskaya
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey V. Tishkov
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Vladimir P. Vinogradov
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Konstantin V. Alekseev
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya St., 117588 Moscow, Russia
- Correspondence:
| |
Collapse
|
11
|
Modern Approaches to Obtaining Floating Drug Dosage Forms (A Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Alaithan S, Naveen NR, Goudanavar PS, Bhavani PD, Ramesh B, Koppuravuri NP, Fattepur S, Sreeharsha N, Nair AB, Aldhubiab BE, Shinu P, Almuqbil RM. Development of Novel Unfolding Film System of Itopride Hydrochloride Using Box-Behnken Design-A Gastro Retentive Approach. Pharmaceuticals (Basel) 2022; 15:ph15080981. [PMID: 36015129 PMCID: PMC9415307 DOI: 10.3390/ph15080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)’s unfolding process for controlled release. The IH-loaded unfolding film formulation was optimized using the Box-Behnken design for folding endurance and length of tested layer (LTL). Initially, the formulation was made using several anti-adhesive additives to promote the unfolding mechanism. Citric acid and sodium bicarbonate were selected as anti-adhesives based on these results. The enfolded film in a capsule shell was shown to unroll in the stomach fluids and render drug delivery up to 12 h in acidic conditions. A fabricated system should have dimensions more than the size of the relaxed pyloric sphincter, and as required, >20 mm LTL was identified. This further confirms that the residence period in the stomach is irrelevant to the fed or fasted condition. Based on desirability criteria, the formulation containing 143.83, 0.7982, and 14.6096 Eudragit L100, PEG, and sodium bicarbonate are selected as optimized formulations (O-IH-UF). The optimized formulation was further analyzed for various parameters such as tensile strength, mechanical strength, unfolding nature, degradability, and in vitro release studies. The pharmacokinetic study revealed greater AUC (area under the curve) and long half-life with the designed O-IH-UF formulation, confirming that the unfolding film type can be a favorable drug system for enhancing the bioavailability of low soluble drugs. The results showed that unfolding types of gastro retentive systems could potentiate the drugs with stability issues in an alkaline medium or those with absorption in acidic conditions.
Collapse
Affiliation(s)
- Shaima Alaithan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (S.A.); (P.S.G.); (S.F.)
| | | | - Prakash S. Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
- Correspondence: (S.A.); (P.S.G.); (S.F.)
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur Medak 502313, Telangana, India
| | - Beveenahalli Ramesh
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
| | - Naga Prashant Koppuravuri
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Malaysia
- Correspondence: (S.A.); (P.S.G.); (S.F.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, Karnataka, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
13
|
Chu Y, Liao S, Wang Q, Ma Y, Wang Y. Floating Hydrogel Beads Made by Droplet Impact. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203355. [PMID: 35871504 DOI: 10.1002/smll.202203355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Droplet impact is a ubiquitous natural phenomenon that has been widely utilized to inspire and facilitate many industrial applications. Compared to the widely studied water droplet impact onto identical liquid surfaces, the water droplet impact onto an oil layer floating on a water bath (OLW) receives far less attention and its potential application has never been exploited. Herein, the process of water droplet impact onto the OLW is investigated with emphasis on the metastable states and potential applications. It is found that the dramatic deformation of the oil-water interface caused by the water droplet impact leads to two metastable states: oil in water in oil in water (O/W/O/W) and oil in water in oil (O/W/O). Through the subsequent introduction of gelation process, the metastable states can be frozen into floating hydrogel beads with similar shape to the roly-poly toys, which are attempted in gastric retentive drug delivery and algae bloom control. Specifically, the floating hydrogel beads perform well in gastric retentive drug delivery in vitro due to their inherent slow-release properties and floating capability. In addition, the floating hydrogel beads loading photocatalysts can capture more sunshine, and exhibit high photocatalytic efficiency, which is thus responsible for efficient algae bloom control.
Collapse
Affiliation(s)
- Yanji Chu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Qianci Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
14
|
Palugan L, Moutaharrik S, Cirilli M, Gelain A, Maroni A, Melocchi A, Zema L, Foppoli A, Cerea M. Evaluation of different types of mannitol for dry granulation by roller compaction. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials 2022; 281:121373. [DOI: 10.1016/j.biomaterials.2022.121373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
|