1
|
Mukherjee S, Joshi V, Reddy KP, Singh N, Das P, Datta P. Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors. Asian J Pharm Sci 2024; 19:100980. [PMID: 39640056 PMCID: PMC11617995 DOI: 10.1016/j.ajps.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T1/2, solubility, pKa, therapeutic index, IC50, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
Collapse
Affiliation(s)
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Priyanka Das
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| |
Collapse
|
2
|
Yao Y, Zhao Q, Xu F, Yao T. Enhanced anti-tumor therapy for hepatocellular carcinoma via sorafenib and KIAA1199-siRNA co-delivery liposomes. Saudi Pharm J 2024; 32:102153. [PMID: 39211513 PMCID: PMC11357851 DOI: 10.1016/j.jsps.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. Sorafenib (Sf) is currently the first-line treatment for HCC. However, due to the side effects and unsatisfied efficiency of Sf, it is urgent to combine different therapeutic agents to inhibit HCC progression and increase the therapeutic efficacy. Here, our study constructed a Sf and KIAA1199-siRNA co-loaded liposome Sf-Lp-KIAA, which was prepared by electrostatic interaction of KIAA1199-siRNA and Sf loaded liposome (Sf-Lp). The particle size, zeta potential, the in vitro cumulative release was investigated. The physical and chemical properties were characterized, and the inhibition of HepG2 growth and metastasis in vitro was investigated. The cellular uptake of the co-loaded liposome was significantly higher than that of free siRNA, and the drug/siRNA could be co-delivered to the target cells. Sf-Lp-KIAA could significantly inhibit the growth, migration, invasion and down-regulate KIAA1199 expression of HepG2 cells in vitro than that of single Sf treated group. In addition, the co-delivery liposome accumulated in the HepG2 subcutaneous tumor model and suppress tumor growth after systemic administration without induce obvious toxicity. The present study implied that the co-delivery of Sf and KIAA1199-siRNA through the co-loaded liposomes exerted synergistic antitumor effects on HCC, which would lay a foundation for HCC therapy in the future.
Collapse
Affiliation(s)
- Yao Yao
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feng Xu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Qiao K, Han J, Zhang H, Li Y, Hou X, Jia Y, Sun Y, Wang H, Xu Z, Liu H, Zhang H, Liu H, Zhang W, Sun T. Intratumor Mycoplasma promotes the initiation and progression of hepatocellular carcinoma. Cell Rep 2023; 42:113563. [PMID: 38088929 DOI: 10.1016/j.celrep.2023.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/21/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
The carcinogenesis and progression of hepatocellular carcinoma (HCC) are closely related to viral infection and intestinal bacteria. However, little is known about bacteria within the HCC tumor microenvironment. Here, we showed that intratumoral Mycoplasma hyorhinis (M. hyorhinis) promoted the initiation and progression of HCC by enhancing nuclear ploidy. We quantified M. hyorhinis in clinical tissue specimens of HCC and observed that patients with high M. hyorhinis load had poor prognosis. We found that gastrointestinal M. hyorhinis can retrogradely infect the liver through the oral-duodenal-hepatopancreatic ampulla route. We further found that the increases in mononuclear polyploidy and cancer stemness resulted from mitochondrial fission caused by intracellular M. hyorhinis. Mechanistically, M. hyorhinis infection promoted the decay of mitochondrial fusion protein (MFN) 1 mRNA in an m6A-dependent manner. Our findings indicated that M. hyorhinis infection promoted pathological polyploidization and suggested that Mycoplasma clearance with antibiotics or regulating mitochondrial dynamics might have the potential for HCC therapy.
Collapse
Affiliation(s)
- Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Haohao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiaohui Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yan Jia
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Yujie Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Huan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Zheng Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Haoyang Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Wei Zhang
- Department of Hepatobiliary Cancer, Research Center for Prevention and Treatment of Liver Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300040, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Baek MJ, Park JH, Nguyen DT, Kim D, Kim J, Kang IM, Kim DD. Bentonite as a water-insoluble amorphous solid dispersion matrix for enhancing oral bioavailability of poorly water-soluble drugs. J Control Release 2023; 363:525-535. [PMID: 37797889 DOI: 10.1016/j.jconrel.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Bentonite (BT), an orally administrable natural clay, is widely used for medical and pharmaceutical purposes due to its unique properties, including swelling, adsorption and ion-exchange. However, its application as a matrix of amorphous solid dispersion (ASD) formulations is rarely reported, despite the fact that drugs can adsorb to BT in an amorphous state. The objective of this study was to explore the feasibility of BT as a water-insoluble ASD matrix for enhancing the oral bioavailability of poorly water-soluble drugs, including sorafenib (SF). We prepared a novel BT-based ASD of an SF-BT composite (SFBTC) by adsorbing SF onto BT under acidic conditions using the ionic interaction between cationic SF and negatively charged BT. Scanning electron microscopy (SEM), powder X-ray diffractometry (pXRD), and differential scanning calorimetry (DSC) analyses revealed that SF adsorbed to BT in an amorphous state at SF:BT ratios from 1:3 to 1:10. In pharmacokinetic studies in rats, SFBTC (1:3) significantly improved the oral bioavailability of SF, and the AUClast of SFBTC (1:3) was 3.3-fold higher than that of NEXAVAR®, a commercial product of SF. An in vitro release study under sink conditions revealed that SFBTC (1:3) completely released SF in a pH-dependent manner, while a nonsink condition study indicated the generation of supersaturation under intestinal pH conditions. A kinetic solubility study showed that the release of SFBTC (1:3) followed the diffusion-controlled mechanism, which is a typical characteristic of water-insoluble matrix-based ASDs. The pharmacokinetic studies of drug-BT composites of various drugs belonging to BCS class II indicated that the pKa value of the adsorbed drugs is one of the most important factors determining their dissolution and oral bioavailability. These results suggest that BT could be a promising water-insoluble ASD matrix for improving the oral bioavailability of poorly water-soluble drugs, including SF.
Collapse
Affiliation(s)
- Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ju-Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dahan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaehwan Kim
- Advanced Geo-materials Research Department, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Republic of Korea
| | - Il-Mo Kang
- Advanced Geo-materials Research Department, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Chandrababu G, Varkey M, Devan AR, Anjaly MV, Unni AR, Nath LR. Kaempferide exhibits an anticancer effect against hepatocellular carcinoma in vitro and in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2461-2467. [PMID: 36988659 DOI: 10.1007/s00210-023-02468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
CONTEXT Phytochemicals have been promising candidates for cancer therapy, affecting various cancer initiation and progression stages. Kaempferide is a mono methoxy flavone that shows potent anticancer effects on multiple cancers both in vitro and in vivo. MATERIALS AND METHODS We evaluated the anticancer activity of kaempferide against HCC using an MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. HepG2, Huh7, and N1S1 were used for preliminary in vitro studies. This is followed by an apoptosis analysis assessed by caspase-3 and 9. The in vivo effects of the compound were studied in the N1S1 orthotopically injected SD (Sprague Dawley) rat model, where the animal was given kaempferide (25 mg/kg thrice a week) and vehicle (Cremophor:ethanol) iv. The expression of caspase-9 and a critical tumor marker, transforming growth factor beta 1 (TGF-β 1), were assessed in both control and treatment tumor samples. RESULTS Kaempferide-induced dose-dependent cytotoxicity in three HCC cell lines (HepG2: IC50 = 27.94 ± 2.199 µM; Huh7: IC50 = 25.65 ± 0.956 µM; and N1S1: IC50 = 15.18 ± 3.68 µM). Furthermore, caspase-dependent apoptosis was confirmed in vitro. Kaempferide showed a significant reduction in tumor size and tumor volume in vivo. Histopathological evaluation by hematoxylin and eosin (H&E) staining confirmed that altered cells were significantly demolished in the kaempferide-treated animals, which correlates with tumor reduction compared to the vehicle-treated group. Caspase-9 levels were also found to be increased in the treatment group. TGF-β 1, a crucial marker in invasion and metastasis of liver cancer, was also downregulated in the treatment group (control = 207.8 ± 22.9 pg/mL and kaempferide-treated = 157.3 ± 13.8 pg/mL). CONCLUSION We report for the first time the potential of kaempferide as a promising alternative against HCC, which further warrants its clinical validation.
Collapse
Affiliation(s)
- Gopika Chandrababu
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Merlin Varkey
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - M V Anjaly
- Central Lab Animal Facility, Amrita Institute of Medical Sciences, Kochi, Kerala, 682041, India
| | - Ashok R Unni
- Central Lab Animal Facility, Amrita Institute of Medical Sciences, Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India.
| |
Collapse
|
6
|
Phatak N, Bhattacharya S, Shah D, Manthalkar L, Sreelaya P, Jain A. CD44 targeted delivery of hyaluronic acid-coated polymeric nanoparticles against colorectal cancer. Nanomedicine (Lond) 2023; 18:1613-1634. [PMID: 37830460 DOI: 10.2217/nnm-2023-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Aim: To develop hyaluronic acid (HA)-coated poly-lactic-co-glycolic acid (PLGA)-polysarcosine (PSAR) coupled sorafenib tosylate (SF) polymeric nanoparticles for targeted colon cancer therapy. Materials & methods: PLGA-PSAR shells were encapsulated with SF via nanoprecipitation. Interactions were examined with transmission electron microscopy, revealing formulation component interactions. Results: The optimized HA-coated polymeric nanoparticles (238.8 nm, -6.1 mV, 68.361% entrapment) displayed enhanced controlled release of SF. These formulations showed superior cytotoxicity against HCT116 cell lines compared with free drug (p < 0.05). In vivo tests on male albino Wistar rats demonstrated improved pharmacokinetics, targeting and biocompatibility. HA-coated PLGA-PSAR-coupled SF polymeric nanoparticles hold potential for effective colorectal therapy. Conclusion: Colon cancer may be precisely targeted by HA-coated PLGA-PSA-coupled SF polymeric nanoparticles.
Collapse
Affiliation(s)
- Niraj Phatak
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Disha Shah
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Laxmi Manthalkar
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Putrevu Sreelaya
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Arinjay Jain
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
7
|
Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: Applications and Perspectives. Polymers (Basel) 2023; 15:2638. [PMID: 37376284 DOI: 10.3390/polym15122638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a Food and Drug Administration (FDA)-approved molecular-targeted chemotherapeutic drug, sorafenib (SF) can inhibit angiogenesis and tumor cell proliferation, leading to improved patient overall survival of hepatocellular carcinoma (HCC). In addition, SF is an oral multikinase inhibitor as a single-agent therapy in renal cell carcinoma. However, the poor aqueous solubility, low bioavailability, unfavorable pharmacokinetic properties and undesirable side effects (anorexia, gastrointestinal bleeding, and severe skin toxicity, etc.) seriously limit its clinical application. To overcome these drawbacks, the entrapment of SF into nanocarriers by nanoformulations is an effective strategy, which delivers SF in a target tumor with decreased adverse effects and improved treatment efficacy. In this review, significant advances and design strategies of SF nanodelivery systems from 2012 to 2023 are summarized. The review is organized by type of carriers including natural biomacromolecule (lipid, chitosan, cyclodextrin, etc.); synthetic polymer (poly(lactic-co-glycolic acid), polyethyleneimine, brush copolymer, etc.); mesoporous silica; gold nanoparticles; and others. Co-delivery of SF and other active agents (glypican-3, hyaluronic acid, apolipoprotein peptide, folate, and superparamagnetic iron oxide nanoparticles) for targeted SF nanosystems and synergistic drug combinations are also highlighted. All these studies showed promising results for targeted treatment of HCC and other cancers by SF-based nanomedicines. The outlook, challenges and future opportunities for the development of SF-based drug delivery are presented.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Meihuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
8
|
Mathew AA, Zakkariya ZT, Ashokan A, Manohar M, Keechilat P, Nair SV, Koyakutty M. 5-FU mediated depletion of myeloid suppressor cells enhances T-cell infiltration and anti-tumor response in immunotherapy-resistant lung tumor. Int Immunopharmacol 2023; 120:110129. [PMID: 37201402 DOI: 10.1016/j.intimp.2023.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Tumor microenvironment (TME) is a heterogeneous system consisting of both cellular and acellular components. The growth and progression of tumors rely greatly on the nature of TME, marking it as an important target in cancer immunotherapy. Lewis Lung Carcinoma (LLC) is an established murine lung cancer model representing immunologically 'cold' tumors characterized by very few infiltrated cytotoxic T-cells, high levels of Myeloid-Derived Suppressor Cells (MDSCs) and Tumor-Associated Macrophages (TAMs). Here, we report various strategies we applied to reverse the non-immunogenic character of this cold tumor by imparting: a) immunogenic cell death using Hypericin nanoparticle-based photodynamic therapy (PDT), b) repolarising TAM using a TLR7/8 agonist, resiquimod, c) immune checkpoint inhibition using anti-PD-L1 and d) depleting MDSCs using low-dose 5-fluorouracil (5-FU) chemotherapy. Interestingly, the nano-PDT, resiquimod or anti-PD-L1 treatment had no major impact on tumor growth, whereas low-dose 5-FU-mediated depletion of MDSCs showed significant anti-tumor effect, primarily caused by the increased infiltration of CD8+ cytotoxic T-cells (∼96%). Though we have tested combining PDT with resiquimod or 5-FU for any synergistic effect, low-dose 5-FU alone showed better response than combinations. In effect, we show that depletion of MDSCs using low-dose 5-FU was one of the best methods to augment infiltration of CD8+ cytotoxic T-cells into a cold tumor, which is resistant to conventional therapies including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ambily Anna Mathew
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Zahara T Zakkariya
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Anusha Ashokan
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Maneesh Manohar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Pavithran Keechilat
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Shantikumar V Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India.
| |
Collapse
|
9
|
Das D, Narayanan D, Ramachandran R, Gowd GS, Manohar M, Arumugam T, Panikar D, Nair SV, Koyakutty M. Intracranial nanomedicine-gel with deep brain-penetration for glioblastoma therapy. J Control Release 2023; 355:474-488. [PMID: 36739909 DOI: 10.1016/j.jconrel.2023.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Glioblastoma Multiforme (GBM) is one of the challenging tumors to treat as it recurs, almost 100%, even after surgery, radiation, and chemotherapy. In many cases, recurrence happens within 2-3cm depth of the resected tumor margin, indicating the inefficacy of current anti-glioma drugs to penetrate deep into the brain tissue. Here, we report an injectable nanoparticle-gel system, capable of providing deep brain penetration of drug up to 4 cm, releasing in a sustained manner up to >15 days. The system consists of ∼222 nm sized PLGA nanoparticles (NP-222) loaded with an anti-glioma drug, Carmustine (BCNU), and coated with a thick layer of polyethylene glycol (PEG). Upon release of the drug from PLGA core, it will interact with the outer PEG-layer leading to the formation of PEG-BCNU nanocomplexes of size ∼33 nm (BCNU-NC-33), which could penetrate >4 cm deep into the brain tissue compared to the free drug (< 5 mm). In vitro drug release showed sustained release of drug for 15 days by BCNU-NP gel, and enhanced cytotoxicity by BCNU-NC-33 drug-nanocomplexes in glioma cell lines. Ex vivo goat-brain phantom studies showed drug diffusion up to 4 cm in tissue and in vivo brain-diffusion studies showed almost complete coverage within the rat brain (∼1.2 cm), with ∼55% drug retained in the tissue by day-15, compared to only ∼5% for free BCNU. Rat orthotopic glioma studies showed excellent anti-tumor efficacy by BCNU-NP gel compared to free drug, indicating the potential of the gel-system for anti-glioma therapy. In effect, we demonstrate a unique method of sustained release of drug in the brain using larger PLGA nanoparticles acting as a reservoir while deep-penetration of the released drug was achieved by in situ formation of drug-nanocomplexes of size <50 nm which is less than the native pore size of brain tissue (> 100 nm). This method will have a major impact on a challenging field of brain drug delivery.
Collapse
Affiliation(s)
- Devika Das
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Dhanya Narayanan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ranjith Ramachandran
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Genekehal Siddaramana Gowd
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Maneesh Manohar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Thennavan Arumugam
- Central Lab Animal Facility, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Dilip Panikar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| |
Collapse
|
10
|
Enhanced oral bioavailability from food protein nanoparticles: A mini review. J Control Release 2023; 354:146-154. [PMID: 36566844 DOI: 10.1016/j.jconrel.2022.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The oral route is the most desirable drug administration path. The oral bioavailability is always compromised from the poor physicochemical and/or biopharmaceutical properties of the active pharmaceutical ingredients. Food protein nanoparticles show promise for oral drug delivery, with improved biosafety and cost-effectiveness compared to polymeric nanoparticles. More importantly, diverse food proteins provide "choice and variety" to meet the challenges faced by different drugs in oral delivery resulting from low solubility, poor permeability, and gastrointestinal stability. The abundance of hydroxyl, amino, and carboxyl groups in food proteins allows easy surface modification of the nanoparticles to impart unique functions. Albeit being in its infancy, food protein nanoparticles exhibit high capability to enhance oral bioavailability of a wide range of drugs from small molecules to biomacromolecules. Considering the rapid growth of the field, the achievements and mechanisms of food protein nanoparticles in enhancing oral bioavailability are reviewed. Factors affecting the performance of food protein nanoparticles are discussed with the purpose to inspire the development of food protein nanoparticle-based oral drug delivery systems.
Collapse
|
11
|
Mimansa, Jamwal M, Das R, Shanavas A. High Drug Loading Nanoparticles Stabilized with Autologous Serum Proteins Passively Inhibits Tumor Growth. Biomacromolecules 2022; 23:5065-5073. [PMID: 36218374 DOI: 10.1021/acs.biomac.2c00907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report drug nanocrystals stabilized with host-specific serum proteins with high loading (∼63% w/w). The human serum derived curcumin nanoparticles (Cur-NanoSera) showed superior in vitro anticancer efficiency compared to a free drug with substantial hemocompatibility. The preadsorbed protein coating impeded further protein corona formation, even with repeated serum exposures. Acute and subacute toxicity evaluations post single and dual injections of C57BL/6 mice indicated that Cur-NanoSera showed no prominent inflammatory response or organ damage in the in-bred mice. Passive accumulation of Cur-NanoSera in tumor tissue significantly suppressed its growth in a syngeneic breast tumor model in addition to controlling tumor burden associated splenomegaly.
Collapse
Affiliation(s)
- Mimansa
- Institute of Nano Science and Technology, Sector 81, Mohali, 140306, India
| | - Manu Jamwal
- Department of Haematology, Post Graduate Institute of Medical Education and Research (PGIMER), Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Reena Das
- Department of Haematology, Post Graduate Institute of Medical Education and Research (PGIMER), Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector 81, Mohali, 140306, India
| |
Collapse
|