1
|
Siarkiewicz P, Luzak B, Michalski R, Artelska A, Szala M, Przygodzki T, Sikora A, Zielonka J, Grzelakowska A, Podsiadły R. Evaluation of a novel pyridinium cation-linked styryl-based boronate probe for the detection of selected inflammation-related oxidants. Free Radic Biol Med 2024; 212:255-270. [PMID: 38122872 DOI: 10.1016/j.freeradbiomed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.
Collapse
Affiliation(s)
- Przemysław Siarkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Cancer Center Translational Metabolomics Shared Resource, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
2
|
Tong L, Yang Y, Zhang L, Tao J, Sun B, Song C, Qi M, Yang F, Zhao M, Jiang J. Design, Synthesis of Hydrogen Peroxide Response AIE Fluorescence Probes Based on Imidazo [1,2-a] Pyridine. Molecules 2024; 29:882. [PMID: 38398634 PMCID: PMC10891862 DOI: 10.3390/molecules29040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Hydrogen peroxide (H2O2), a significant member of reactive oxygen species, plays a crucial role in oxidative stress and cell signaling. Abnormal levels of H2O2 in the body can induce damage or even impair body function, leading to the development of certain diseases. Therefore, real-time monitoring of H2O2 in living cells is very important. In this work, the aggregation-induced emission fluorescence probe 2-(2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl) oxy) phenyl) imidazo [1,2-a] pyridine (B2) was designed and synthesized, which enables the long-term tracing of H2O2 in living cells. The addition of H2O2 to probe B2 results in a dramatic fluorescence enhancement around 500 nm. Notably, B2 can visualize both exogenous and endogenous H2O2 in living cells. The synthesis method for B2 is simple, has a high yield, and utilizes readily available materials. It exhibits advantages such as low toxicity, photostability, and good biocompatibility. Consequently, the developed fluorescent probe in this study has great potential as a reliable tool for determining H2O2 in living cells.
Collapse
Affiliation(s)
- Luan Tong
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (L.T.)
| | - Yulong Yang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (L.T.)
| | - Likang Zhang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (L.T.)
| | - Jiali Tao
- Department of Mining Engineering, Shanxi Institute of Technology, Yangquan 045000, China
| | - Bin Sun
- Department of Mining Engineering, Shanxi Institute of Technology, Yangquan 045000, China
| | - Cairong Song
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (L.T.)
| | - Mengchen Qi
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (L.T.)
| | - Fengqing Yang
- Department of Mining Engineering, Shanxi Institute of Technology, Yangquan 045000, China
| | - Mingxia Zhao
- Department of Mining Engineering, Shanxi Institute of Technology, Yangquan 045000, China
- Yangquan Technology Innovation Center of Carbon Dioxide Capture, Utilization and Storage, Shanxi Institute of Technology, Yangquan 045000, China
| | - Junbing Jiang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (L.T.)
- Department of Mining Engineering, Shanxi Institute of Technology, Yangquan 045000, China
| |
Collapse
|
3
|
Wu TC, Lai CL, Sivakumar G, Huang YH, Lai CH. Synthesis of a Multifunctional Glyco-Block Copolymer through Reversible Addition-Fragmentation Chain Transfer Polymerization and Click Chemistry for Enzyme and Drug Loading into MDA-MB-231 Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59746-59759. [PMID: 38108280 DOI: 10.1021/acsami.3c12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reversible addition-fragmentation chain transfer polymerization has been used in various applications such as preparing nanoparticles, stimulus-responsive polymers, and hydrogels. In this study, the combination of this polymerization method and Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry was used to prepare the multifunctional glyco-diblock copolymer P(PEG-co-AM)-b-PF, which is composed of mannosides for cell targeting, poly(ethylene glycol) (PEG) for biocompatibility, and aryl-aldehyde moieties for enzyme immobilization. The alkyne group in the polymer structure enables the alternation for other azide-conjugated monomers. The stepwise synthesis of the polymers was fully characterized. P(PEG-co-AM)-b-PF was self-assembled into polymeric nanoparticles (BDOX-GOx@NPs) for glucose oxidase immobilization through Schiff base formation and for encapsulating the prodrug of arylboronate-linked doxorubicin (BA-DOX) under optimal conditions. Glucose oxidase in BDOX-GOx@NPs catalyzes glucose oxidation to produce gluconic acid and H2O2, which cause oxidative stress. Glucose oxidase also consumes glucose, causing starvation in cancer cells. The produced H2O2 can selectively activate the anticancer prodrug BA-DOX for chemotherapy. In vitro data indicate that GOx and the prodrug BA-DOX present inside BDOX-GOx@NPs exhibit higher stability than free glucose oxidase with a favorable active DOX release profile. MDA-MB-231 cells, which express mannose receptors, were used to establish a model in this study. The bioactivity of the nanoplatform in the two- and three-dimensional models of MDA-MB-231 cancer cells was investigated to ascertain its antitumor efficacy.
Collapse
Affiliation(s)
- Tzu-Chien Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiao-Ling Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Govindan Sivakumar
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yung-Hsin Huang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Ciou JJ, Wu TC, Chen ZJ, Cheng B, Lai CH. A selective fluorescent turn-on probe for imaging and sensing of hydrogen peroxide in living cells. Anal Bioanal Chem 2023; 415:4949-4959. [PMID: 37329467 DOI: 10.1007/s00216-023-04800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Fluorescent turn-on probes have been extensively used in disease diagnosis and research on pathological disease mechanisms because of their low background interference. Hydrogen peroxide (H2O2) plays a vital role in regulating various cellular functions. In the current study, a fluorescent probe, HCyB, based on hemicyanine and arylboronate structures, was designed to detect H2O2. HCyB reacted with H2O2 and exhibited a good linear relationship for H2O2 concentrations ranging from 15 to 50 μM and good selectivity over other species. The fluorescent detection limit was 76 nM. Moreover, HCyB exhibited less toxicity and mitochondrial-targeting abilities. HCyB was successfully used to monitor exogenous or endogenous H2O2 in mouse macrophage RAW 264.7, human skin fibroblast WS1, breast cancer cell MDA-MB-231, and human leukemia monocytic THP1 cells.
Collapse
Affiliation(s)
- Jyun-Jia Ciou
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tzu-Chien Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Zhi-Jia Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
5
|
Coffetti G, Moraschi M, Facchetti G, Rimoldi I. The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives. Molecules 2023; 28:molecules28083407. [PMID: 37110640 PMCID: PMC10144581 DOI: 10.3390/molecules28083407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
One of the main problems in chemotherapy using platinum drugs as anticancer agents is the resistance phenomenon. Synthesizing and evaluating valid alternative compounds is challenging. This review focuses on the last two years of progress in the studies of platinum (II)- and platinum (IV)-based anticancer complexes. In particular, the research studies reported herein focus on the capability of some platinum-based anticancer agents to bypass resistance to chemotherapy, which is typical of well-known drugs such as cisplatin. Regarding platinum (II) complexes, this review deals with complexes in trans conformation; complexes containing bioactive ligands, as well as those that are differently charged, all experience a different reaction mechanism compared with cisplatin. Regarding platinum (IV) compounds, the focus was on complexes with biologically active ancillary ligands that exert a synergistic effect with platinum (II)-active complexes upon reduction, or those for which controllable activation can be realized thanks to intracellular stimuli.
Collapse
Affiliation(s)
- Giulia Coffetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Martina Moraschi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|