1
|
Zahed Nasab S, Akbari B, Mostafavi E, Zare I. Chitosan nanoparticles in tumor imaging and therapy. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:405-445. [DOI: 10.1016/b978-0-443-14088-4.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Rostaminasab S, Esmaeili A, Moosavi-Movahedi F, Memarkashani S, Rezaei Rudmianeh H, Shourian M, Shafiee Ardestani M, Moosavi-Movahedi AA, Asghari SM. Enhanced antitumor activity of lapatinib against triple-negative breast cancer via loading in human serum albumin. Int J Biol Macromol 2024; 282:136760. [PMID: 39437943 DOI: 10.1016/j.ijbiomac.2024.136760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Triple-negative breast cancer (TNBC) presents significant treatment challenges due to its aggressive nature. Human serum albumin (HSA) is a promising drug delivery platform, offering high binding capacity, biocompatibility, and reduced toxicity. Lapatinib (LAP), a tyrosine kinase inhibitor for TNBC, is hindered by poor water solubility and toxicity. To address these issues, LAP was encapsulated within HSA (HSA-LAP), and its structural, drug release, and therapeutic properties were evaluated in cellular and animal TNBC models. HSA-LAP demonstrated efficient drug loading and pH-dependent tumor-targeted release, favoring acidic tumor microenvironments. Structural and microscopic studies confirmed LAP binding to HSA, with only minor structural and no significant morphological changes observed. In 4T1 breast cancer cells, HSA-LAP exhibited superior anti-proliferative, pro-apoptotic, and anti-migratory effects compared to free LAP, which were further amplified when combined with VGB3, a VEGFR1/2-targeting peptide, indicating an effective dual-targeting strategy for TNBC. In vivo, HSA-LAP showed greater tumor inhibition and improved survival rates, especially in combination with VGB3 through apoptosis induction. Biodistribution studies using technetium-99m (99mTc) labeling revealed enhanced tumor targeting. These findings highlight the potential of HSA as a delivery vehicle for LAP, particularly in combination with anti-angiogenic agents like VGB3, offering a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Sadegh Rostaminasab
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Alireza Esmaeili
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Sahar Memarkashani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Mostafa Shourian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | | | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Kaur N, Gautam P, Nanda D, Meena AS, Shanavas A, Prasad R. Lipid Nanoparticles for Brain Tumor Theranostics: Challenges and Status. Bioconjug Chem 2024; 35:1283-1299. [PMID: 39207940 DOI: 10.1021/acs.bioconjchem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid nanoparticles have been recognized as a powerful weapon for delivering various imaging and therapeutic agents to the localized solid tumors, especially brain tumors individually or in combination. Promisingly, lipid-based nanosystems have been considered as safe delivery systems which are even approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). One recent spotlight of lipid nanoparticles as COVID-19 mRNA vaccines where lipid nanoparticles play an important role in effectively protecting and delivering mRNA to the desired cells. As of now, successive progress in lipid-based nanocarriers, viz., nanoliposomes, solid lipid nanoparticles, ionizable lipid nanostructures, etc., with better biochemical and biophysical stabilities, has been noticed and reported. Moreover, lipid nanostructures have been considered as versatile therapeutics platforms for a variety of diseases due to their biocompatibility, ability to protect and deliver therapeutics to the localized site, and better reproducibility and reliability. However, lipid nanoparticles still face morphological and biochemical changes upon their in vivo administration. These changes alter the specific biological and pathological response of lipid nanoparticles during their personalized brain tumor theranostics. Second, lipid nanomedicine still faces major challenges of zero premature leakage of loaded cargo, long-term colloidal stability, and off targeting. Herein, various lipid-based nanomedicines for brain tumor imaging and therapeutics "theranostics" have been reviewed and summarized considering major aspects of preclinical and clinical studies. On the other hand, engineering and biological challenges of lipid theranostics systems with relevant advantages and guidelines for clinical practice for different brain tumors have also been discussed. This review provides in-depth knowledge of lipid nanoparticle-based theranostics agents for brain tumor imaging and therapeutics.
Collapse
Affiliation(s)
- Navneet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Priyadarshi Gautam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dibyani Nanda
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Avtar Singh Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
Singh N, Chakravarti R, Das A, Gupta S, Ghosh D, Datta P. A Lipophilic Salt Form to Enhance the Lipid Solubility and Certain Biopharmaceutical Properties of Lapatinib. Mol Pharm 2024; 21:3921-3935. [PMID: 38935681 DOI: 10.1021/acs.molpharmaceut.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Lapatinib (LTP) commercially available as lapatinib ditosylate (LTP-DTS) salt is the only drug approved for the treatment of HER-positive metastatic breast cancer. A low and pH-dependent solubility results in poor and variable oral bioavailability, thus driving significant interest in molecular modification and formulation strategies of the drug. Furthermore, due to very high crystallinity, LTP and LTP-DTS have low solubility in lipid excipients, making it difficult to be delivered by lipid-based carrier systems. Thus, the present work reports a new salt form of LTP with a docusate counterion to enhance the pharmaceutical properties of the drug (LTP-DOC). NMR spectra showed a downfield shift of the methylene singlet proton from 3.83 and 4.41 ppm, indicating a lowering of electron density on the adjacent nitrogen atom and confirming the formation of amine-sulfonyl salt through the specified basic nitrogen center located adjacent to the furan ring. PXRD diffractograms of LTP-DOC indicated a reduced crystallinity of the prepared salt. The dissolution, equilibrium solubility, lipid excipient solubility, partitioning coefficient, distribution coefficient, tabletability, and in vitro cytotoxicity of the lipophilic salt of LTP were investigated. The equilibrium solubility data showed that LTP-DOC possesses a pH-independent solubility profile in the pH range of 3.5 to 7.4 with a 3.14 times higher permeability coefficient than commercial ditosylate salt. Furthermore, the prepared LTP-DOC salts showed twice higher log P than the free base and 8 times higher than LTP-DTS. The prepared LTP-DOC was found to have 4- to 9-fold higher solubility in lipid excipients like Capmul MCM C8 and Maisine CC compared to the ditosylate salt. The LTP-DOC salt was tabletable and showed approximately 1.2 times lower dissolution than commercial ditosylate salt, indicating extended-release behavior. A cytotoxicity study of LTP-DOC salt showed an approximately 2.5 times lower IC50 value than the LTP-free base and 1.7 times lower than commercial ditosylate salt with an approximately 3 times higher selectivity index. The investigations strongly indicate a high translational potential of the prepared salt form in maintaining solubility-lipophilicity interplay, enhancing the drug's bioavailability, and developing lipidic formulations.
Collapse
Affiliation(s)
- Nidhi Singh
- Polymer-based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Arka Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Sreya Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Pallab Datta
- Polymer-based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| |
Collapse
|
5
|
Du SG, Zhang HM, Ji YX, Tian YL, Wang D, Zhu K, Zhang QG, Liu SP. Polyphyllin VII Promotes Apoptosis in Breast Cancer by Inhibiting MAPK/ERK Signaling Pathway through Downregulation of SOS1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:885-904. [PMID: 38716619 DOI: 10.1142/s0192415x24500368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shu-Guang Du
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
- Laboratory Department, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P. R. China
| | - Yun-Xia Ji
- Laboratory Department, Zhangjiakou First Hospital, Zhangjiakou 075041, P. R. China
| | - Yu-Lin Tian
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Dan Wang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Kun Zhu
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Shuang-Ping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| |
Collapse
|
6
|
Li T, Ashrafizadeh M, Shang Y, Nuri Ertas Y, Orive G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: immunotherapy, phototherapy and clinical perspectives. Drug Discov Today 2024; 29:103851. [PMID: 38092146 DOI: 10.1016/j.drudis.2023.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer is the most common and malignant tumor among women. Chitosan (CS)-based nanoparticles have been introduced into breast cancer therapy as a way to increase the targeted delivery of drugs and genes to the tumor site. CS nanostructures suppress tumorigenesis by enhancing both the targeted delivery of cargo (drug and gene) and its accumulation in tumor cells. The tumor cells internalize CS-based nanoparticles through endocytosis. Moreover, chitosan nanocarriers can also induce phototherapy-mediated tumor ablation. Smart and multifunctional types of CS nanoparticles, including pH-, light- and redox-responsive nanoparticles, can be used to improve the potential for breast cancer removal. In addition, the acceleration of immunotherapy by CS nanoparticles has also been achieved, and there is potential to develop CS-nanoparticle hydrogels that can be used to suppress tumorigenesis.
Collapse
Affiliation(s)
- Tianfeng Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, 518055, China; Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Yuru Shang
- Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology (UIRMI) (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Luo X. Nanobiotechnology-based strategies in alleviation of chemotherapy-mediated cardiotoxicity. ENVIRONMENTAL RESEARCH 2023; 238:116989. [PMID: 37633635 DOI: 10.1016/j.envres.2023.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The cardiovascular diseases have been among the most common malignancies and the first leading cause of death, even higher than cancer. The cardiovascular diseases can be developed as a result of cardiac dysfunction and damages to heart tissue. Exposure to toxic agents and chemicals that induce cardiac dysfunction has been of interest in recent years. The chemotherapy drugs are commonly used for cancer therapy and in these patients, cardiovascular diseases have been widely observed that is due to negative impact of chemotherapy drugs on the heart. These drugs increase oxidative damage and inflammation, and mediate apoptosis and cardiac dysfunction. Hence, nanotechnological approaches have been emerged as new strategies in attenuation of chemotherapy-mediated cardiotoxicity. The first advantage of nanoparticles can be explored in targeted and selective delivery of drugs to reduce their accumulation in heart tissue. Nanostructures can deliver bioactive and therapeutic compounds in reducing cardiotoxicity and alleviation toxic impacts of chemotherapy drugs. The functionalization of nanostructures increases their selectivity against tumor cells and reduces accumulation of drugs in heart tissue. The bioplatforms such as chitosan and alginate nanostructures can also deliver chemotherapy drugs and reduce their cardiotoxicity. The function of nanostructures is versatile in reduction of cardiotoxicity by chemotherapy drugs and new kind of platforms is hydrogels that can mediate sustained release of drug to reduce its toxic impacts on heart tissue. The various kinds of nanoplatforms have been developed for alleviation of cardiotoxicity and their future clinical application depends on their biocompatibility. High concentration level of chitosan nanoparticles can stimulate cardiotoxicity. Therefore, if nanotechnology is going to be deployed for drug delivery and reducing cardiotoxicity, the first pre-requirement is to lack toxicity on normal cells and have high biocompatibility.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China.
| |
Collapse
|
8
|
Serra M, Rubes D, Schinelli S, Paolillo M. Small Molecules against Metastatic Tumors: Concrete Perspectives and Shattered Dreams. Cancers (Basel) 2023; 15:4173. [PMID: 37627201 PMCID: PMC10453213 DOI: 10.3390/cancers15164173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the main cause of anti-cancer therapy failure, leading to unfavorable prognosis for patients. The true challenge to increase cancer patient life expectancy by making cancer a chronic disease with periodic but manageable relapses relies on the development of efficient therapeutic strategies specifically directed against key targets in the metastatic process. Traditional chemotherapy with classical alkylating agents, microtubule inhibitors, and antimetabolites has demonstrated its limited efficacy against metastatic cells due to their capacity to select chemo-resistant cell populations that undergo epithelial-to-mesenchymal transition (EMT), thus promoting the colonization of distant sites that, in turn, sustain the initial metastatic process. This scenario has prompted efforts aimed at discovering a wide variety of small molecules and biologics as potential anti-metastatic drugs directed against more specific targets known to be involved in the various stages of metastasis. In this short review, we give an overview of the most recent advances related to important families of antimetastatic small molecules: intracellular tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, KRAS inhibitors, and integrin antagonists. Although the majority of these small molecules are not yet approved and not available in the drug market, any information related to their stage of development could represent a precious and valuable tool to identify new targets in the endless fight against metastasis.
Collapse
Affiliation(s)
- Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.R.); (S.S.); (M.P.)
| | | | | | | |
Collapse
|