1
|
Liehr T, Ziegler M, Person L, Kankel S, Padutsch N, Weise A, Weimer JP, Williams H, Ferreira S, Melo JB, Carreira IM. Small supernumerary marker chromosomes derived from human chromosome 11. Front Genet 2023; 14:1293652. [PMID: 38174048 PMCID: PMC10763568 DOI: 10.3389/fgene.2023.1293652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: With only 39 reported cases in the literature, carriers of a small supernumerary marker chromosome (sSMC) derived from chromosome 11 represent an extremely rare cytogenomic condition. Methods: Herein, we present a review of reported sSMC(11), add 18 previously unpublished cases, and closely review eight cases classified as 'centromere-near partial trisomy 11' and a further four suited cases from DECIPHER. Results and discussion: Based on these data, we deduced the borders of the pericentric regions associated with clinical symptoms into a range of 2.63 and 0.96 Mb for chromosome 11 short (p) and long (q) arms, respectively. In addition, the minimal pericentric region of chromosome 11 without triplo-sensitive genes was narrowed to positions 47.68 and 60.52 Mb (GRCh37). Furthermore, there are apparent differences in the presentation of signs and symptoms in carriers of larger sSMCs derived from chromosome 11 when the partial trisomy is derived from different chromosome arms. However, the number of informative sSMC(11) cases remains low, with overlapping presentation between p- and q-arm-imbalances. In addition, uniparental disomy (UPD) of 'normal' chromosome 11 needs to be considered in the evaluation of sSMC(11) carriers, as imprinting may be an influencing factor, although no such cases have been reported. Comprehensively, prenatal sSMC(11) cases remain a diagnostic and prognostic challenge.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Monika Ziegler
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Luisa Person
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Niklas Padutsch
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Jörg Paul Weimer
- Department of Gynecology and Obstetrics, University Hospital of Schleswig-Holstein, University Kiel, Kiel, Germany
| | | | - Susana Ferreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana B. Melo
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M. Carreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Chen CP, Chen M, Wu CH, Lin CJ, Chern SR, Wu PS, Chen YN, Chen SW, Chang SP, Chen LF, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 21q11.2-q21.1 and a literature review. Taiwan J Obstet Gynecol 2018; 56:554-557. [PMID: 28805618 DOI: 10.1016/j.tjog.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 21q11.2-q21.1, and we review the literature of an sSMC(21) with a duplication of 21q11.2-q21.1. CASE REPORT A 40-year-old woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 47,XX,+mar [18]/46,XX [4]. The parental karyotypes were normal. Prenatal ultrasound findings were unremarkable. aCGH analysis of cultured amniocytes revealed a 2.855-Mb duplication of 21q11.2-q21.1 encompassing the genes of LIPI, ABCC13 and NRIP1. Metaphase fluorescence in situ hybridization analysis on cultured amniocytes revealed a result of 47,XX,+mar .ish der(13/21) (D13/21Z1+) [10]. Spectral karyotyping analysis determined the origin of chromosome 21 in the sSMC. A female fetus was delivered with no phenotypic features of Down syndrome and no structural abnormalities. We discuss the genotype-phenotype correlation of LIPI, ABCC13 and NRIP1, and review the literature of an sSMC(21) associated with dup(21)(q11.2q21.1). CONCLUSION aCGH is useful for identification of the nature and genetic component of a prenatally detected sSMC.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Ming Chen
- Department of Medical Research, Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan; Department of Genomic Medicine, Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan; Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Hsun Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Ju Lin
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Yen-Ni Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shun-Ping Chang
- Department of Medical Research, Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan; Department of Genomic Medicine, Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan
| | - Li-Feng Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
3
|
Al-Rikabi ABH, Pekova S, Fan X, Jančušková T, Liehr T. Small Supernumerary Marker Chromosome May Provide Information on Dosage-insensitive Pericentric Regions in Human. Curr Genomics 2018; 19:192-199. [PMID: 29606906 PMCID: PMC5850507 DOI: 10.2174/1389202918666170717163830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/18/2016] [Accepted: 01/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cytogenetically visible chromosomal imbalances in humans are deleterious and adverse in the majority of the cases. However, healthy persons living with chromosomal imbalances in the range of several megabasepairs (Mbps) in size, like carriers of small Supernumerary Marker Chromosomes (sSMCs) exist. MATERIALS & METHODS The identification of healthy sSMC carriers with euchromatic centromere-near (ECN) imbalances led to the following proposal: ECN-regions do not contain any dosage sensitive genes. Due to own previous work, dosage-insensitive pericentric ECN-regions were already determined with an accuracy of 0.3 and 5 Mbp. Based on this data we established 43 new pericentromeric probe sets spanning about 3-5 Mbp of each euchromatic human chromosome arm starting from the known insensitive regions towards distal. Such so called pericentromeric-critical region fluorescence in situ hybridization (PeCR-FISH) probe sets were applied exemplarily and successful here in 15 sSMC cases as available from the Else Kröner-Fresenius-sSMC-cellbank . CONCLUSION Most of the involved sSMC breakpoints could be characterized as a higher resolution than before. An unexpected result was that in 5/15 cases cryptic mosaicism was characterized. The latter is also to be considered to have potentially an influence on the clinical outcome in these so-called discontinuous sSMCs. Overall, the suitability of PeCR-FISH to characterize sSMCs was proven; the potential of this probe set to further delineate sizes of dosage insensitive pericentric regions is obvious but dependent on suited cases. Furthermore, discontinuous sSMCs can be identified by this approach and this new subtype of sSMC needs to be studied in more detail in future.
Collapse
Affiliation(s)
- Ahmed B. Hamid Al-Rikabi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747Jena, Germany
| | - Sona Pekova
- Synlab Genetics s.r.o., Evropska 176/16, 16000 Prague 6, Czech Republic
| | - Xioabo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747Jena, Germany
| | - Tereza Jančušková
- Synlab Genetics s.r.o., Evropska 176/16, 16000 Prague 6, Czech Republic
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747Jena, Germany
| |
Collapse
|
4
|
Armstrong ME, Weaver DD, Lah MD, Vance GH, Landis BJ, Ware SM, Helm BM. Novel phenotype of 5p13.3-q11.2 duplication resulting from supernumerary marker chromosome 5: implications for management and genetic counseling. Mol Cytogenet 2018; 11:23. [PMID: 29599822 PMCID: PMC5870180 DOI: 10.1186/s13039-018-0372-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
Background Supernumerary marker chromosomes derived from chromosome 5 (SMC5) and 5p13 duplication syndrome are rare disorders, and phenotypic descriptions of patients are necessary to better define genotype-phenotype correlations for accurate, comprehensive genetic counseling. The purpose of this study is to highlight the unique findings of a patient with a 5p13.3-q11.2 duplication arising from a SMC5 and compare and contrast the phenotype with cases in the literature. Case presentation We report on an adult male with a 22 Mb duplication of chromosome 5p13.3-q11.2 resulting from a small SMC5. The patient has a history of prenatal polyhydramnios, dysmorphic features, respiratory issues, talipes equinovarus, hypotonia, developmental delay, and autistic features. The patient also has novel features of aortic dilation, pectus excavatum, kyphoscoliosis, and skin striae, suggestive of a connective tissue disorder. Despite these features he did not meet clinical diagnostic criteria for a well-characterized connective tissue disorder. Additional molecular genetic testing for syndromic and non-syndromic aortic aneurysms was negative. Conclusions Many of the patient’s features are consistent with individuals reported with 5p13 duplication syndrome and similar cases of SMC5, including polyhydramnios, macrocephaly, dolichocephaly, pre-auricular pits, arachnodactyly, respiratory problems, and developmental delays. It is unclear if the patient’s unique features of aortic dilation, pectus excavatum, kyphoscoliosis, and skin striae could be novel features of the SMC5 given its rarity and the few well-phenotyped adults in the literature. This report reviews the literature and provides additional phenotypic information to define the genotype-phenotype correlation of SMC5 and 5p13 duplication syndrome.
Collapse
Affiliation(s)
- Margaret E Armstrong
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,3Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa USA
| | - David D Weaver
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA
| | - Melissa D Lah
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA
| | - Gail H Vance
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,2Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Benjamin J Landis
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,2Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Stephanie M Ware
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,2Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Benjamin M Helm
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA
| |
Collapse
|
5
|
Detection of paternal uniparental disomy 9 in a neonate with prenatally detected mosaicism for a small supernumerary marker chromosome 9 and a supernumerary ring chromosome 9. Taiwan J Obstet Gynecol 2017; 56:527-533. [DOI: 10.1016/j.tjog.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
|
6
|
Liehr T, Othman MAK, Rittscher K. Multicolor Karyotyping and Fluorescence In Situ Hybridization-Banding (MCB/mBAND). Methods Mol Biol 2017; 1541:181-187. [PMID: 27910024 DOI: 10.1007/978-1-4939-6703-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multicolor fluorescence in situ hybridization (mFISH) approaches are routine applications in tumor as well as clinical cytogenetics nowadays. The first approach when thinking about mFISH is multicolor karyotyping using human whole chromosome paints as probes; this can be achieved by narrow-band filter-based multiplex-FISH (M-FISH) or interferometer/spectroscopy-based spectral karyotyping (SKY). Besides, various FISH-based banding approaches were reported in the literature, including multicolor banding (MCB/mBAND) the latter being evaluated by narrow-band filters, and using specific software. Here, we describe the combined application of multicolor karyotyping and MCB/mBAND for the characterization of simple and complex acquired chromosomal changes in cancer cytogenetics.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743, Jena, Germany.
| | - Moneeb A K Othman
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743, Jena, Germany
| | - Katharina Rittscher
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743, Jena, Germany
| |
Collapse
|
7
|
New BAC probe set to narrow down chromosomal breakpoints in small and large derivative chromosomes, especially suited for mosaic conditions. Methods Mol Biol 2014; 1227:279-87. [PMID: 25239752 DOI: 10.1007/978-1-4939-1652-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Fluorescence in situ hybridization (FISH) and/or array-comparative genomic hybridization (aCGH) performed after initial banding cytogenetics is still the gold standard for detection of chromosomal rearrangements. Although aCGH provides a higher resolution, FISH has two main advantages over the array-based approaches: (1) it can be applied to characterize balanced as well as unbalanced rearrangements, whereas aCGH is restricted to unbalanced ones, and (2) chromosomal aberrations present in low level or complex mosaics can be characterized by FISH without any problems, while aCGH requires presence of over 50 % of aberrant cells in the sample for detection. Recently, a new FISH-based probe set was presented: the so-called pericentric-ladder-FISH (PCL-FISH) that enables characterization of chromosomal breakpoints especially in mosaic small supernumerary marker chromosomes (sSMC). It can also be applied on large inborn or acquired derivative chromosomes. The main feature of this set is that the probes are applied in a chromosome-specific manner and they align along the chromosome in average intervals of ten megabasepairs. Hence PCL-FISH provides denser coverage and a more precise anchorage on the human DNA-sequence than most other FISH-banding approaches.
Collapse
|
8
|
Castronovo C, Valtorta E, Crippa M, Tedoldi S, Romitti L, Amione MC, Guerneri S, Rusconi D, Ballarati L, Milani D, Grosso E, Cavalli P, Giardino D, Bonati MT, Larizza L, Finelli P. Design and validation of a pericentromeric BAC clone set aimed at improving diagnosis and phenotype prediction of supernumerary marker chromosomes. Mol Cytogenet 2013; 6:45. [PMID: 24171812 PMCID: PMC4176193 DOI: 10.1186/1755-8166-6-45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022] Open
Abstract
Background Small supernumerary marker chromosomes (sSMCs) are additional, structurally abnormal chromosomes, generally smaller than chromosome 20 of the same metaphase spread. Due to their small size, they are difficult to characterize by conventional cytogenetics alone. In regard to their clinical effects, sSMCs are a heterogeneous group: in particular, sSMCs containing pericentromeric euchromatin are likely to be associated with abnormal outcomes, although exceptions have been reported. To improve characterization of the genetic content of sSMCs, several approaches might be applied based on different molecular and molecular-cytogenetic assays, e.g., fluorescent in situ hybridization (FISH), array-based comparative genomic hybridization (array CGH), and multiplex ligation-dependent probe amplification (MLPA). To provide a complementary tool for the characterization of sSMCs, we constructed and validated a new, FISH-based, pericentromeric Bacterial Artificial Chromosome (BAC) clone set that with a high resolution spans the most proximal euchromatic sequences of all human chromosome arms, excluding the acrocentric short arms. Results By FISH analysis, we assayed 561 pericentromeric BAC probes and excluded 75 that showed a wrong chromosomal localization. The remaining 486 probes were used to establish 43 BAC-based pericentromeric panels. Each panel consists of a core, which with a high resolution covers the most proximal euchromatic ~0.7 Mb (on average) of each chromosome arm and generally bridges the heterochromatin/euchromatin junction, as well as clones located proximally and distally to the core. The pericentromeric clone set was subsequently validated by the characterization of 19 sSMCs. Using the core probes, we could rapidly distinguish between heterochromatic (1/19) and euchromatic (11/19) sSMCs, and estimate the euchromatic DNA content, which ranged from approximately 0.13 to more than 10 Mb. The characterization was not completed for seven sSMCs due to a lack of information about the covered region in the reference sequence (1/19) or sample insufficiency (6/19). Conclusions Our results demonstrate that this pericentromeric clone set is useful as an alternative tool for sSMC characterization, primarily in cases of very small SMCs that contain either heterochromatin exclusively or a tiny amount of euchromatic sequence, and also in cases of low-level or cryptic mosaicism. The resulting data will foster knowledge of human proximal euchromatic regions involved in chromosomal imbalances, thereby improving genotype–phenotype correlations.
Collapse
Affiliation(s)
- Chiara Castronovo
- Laboratorio di Citogenetica Medica e Genetica Molecolare, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liehr T, Weise A, Hamid AB, Fan X, Klein E, Aust N, Othman MA, Mrasek K, Kosyakova N. Multicolor FISH methods in current clinical diagnostics. Expert Rev Mol Diagn 2013; 13:251-5. [PMID: 23570403 DOI: 10.1586/erm.12.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multicolor FISH (mFISH) assays are currently indispensable for a precise description of derivative chromosomes. Routine application of such techniques on human chromosomes started in 1996 with the simultaneous use of all 24 human whole-chromosome painting probes in multiplex-FISH and spectral karyotyping. Since then, multiple approaches for chromosomal differentiation based on multicolor-FISH (MFISH) assays have been developed. Predominantly, they are applied to characterize marker or derivative chromosomes identified in conventional banding analysis. Since the introduction of array-based comparative genomic hybridization (aCGH), mFISH is also applied to verify and further delineate aCGH-detected aberrations. For the latter, it is important to consider the fact that aCGH cannot detect or characterize balanced rearrangements, which are important to be resolved in detail in infertility diagnostics. In addition, mFISH is necessary to distinguish different imbalanced situations detectable in aCGH; small supernumerary marker chromosomes have to be differentiated from insertions or unbalanced translocations. This review presents an overview on the available mFISH methods and their applications in pre- and post-natal clinical genetics.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, Jena D-07743, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Human ring chromosomes and small supernumerary marker chromosomes-do they have telomeres? Chromosome Res 2012; 20:825-35. [PMID: 23076733 DOI: 10.1007/s10577-012-9316-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Ring chromosomes and small supernumerary marker chromosomes (sSMC) are enigmatic types of derivative chromosomes, in which the telomeres are thought to play a crucial role in their formation and stabilization. Considering that there are only a few studies that evaluate the presence of telomeric sequences in ring chromosomes and on sSMC, here, we analyzed 14 ring chromosomes and 29 sSMC for the presence of telomeric sequences through fluorescence in situ hybridization (FISH). The results showed that ring chromosomes can actually fall into two groups: the ones with or without telomeres. Additionally, telomeric signals were detectable at both ends of centric and neocentric sSMC with inverted duplication shape, as well as in complex sSMC. Apart from that, generally both ring- and centric minute-shaped sSMC did not present telomeric sequences neither detectable by FISH nor by a second protein-directed immunohistochemical approach. However, the fact that telomeres are absent does not automatically mean that the sSMC has a ring shape, as often deduced in the previous literature. Overall, the results obtained by FISH studies directed against telomeres need to be checked carefully by other approaches.
Collapse
|