1
|
Zeng Q, Du ZQ. Advances in the discovery of genetic elements underlying longissimus dorsi muscle growth and development in the pig. Anim Genet 2023; 54:709-720. [PMID: 37796678 DOI: 10.1111/age.13365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 10/07/2023]
Abstract
As a major source of protein in human diets, pig meat plays a crucial role in ensuring global food security. Key determinants of meat production refer to the chemical and physical compositions or characteristics of muscle fibers, such as the number, hypertrophy potential, fiber-type conversion and intramuscular fat deposition. However, the growth and formation of muscle fibers comprises a complex process under spatio-temporal regulation, that is, the intermingled and concomitant proliferation, differentiation, migration and fusion of myoblasts. Recently, with the fast and continuous development of next-generation sequencing technology, the integration of quantitative trait loci mapping with genome-wide association studies (GWAS) has greatly helped animal geneticists to discover and explore thousands of functional or causal genetic elements underlying muscle growth and development. However, owing to the underlying complex molecular mechanisms, challenges to in-depth understanding and utilization remain, and the cost of large-scale sequencing, which requires integrated analyses of high-throughput omics data, is high. In this review, we mainly elaborate on research advances in integrative analyses (e.g. GWAS, omics) for identifying functional genes or genomic elements for longissimus dorsi muscle growth and development for different pig breeds, describing several successful transcriptome analyses and functional genomics cases, in an attempt to provide some perspective on the future functional annotation of genetic elements for muscle growth and development in pigs.
Collapse
Affiliation(s)
- Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
2
|
Miao Y, Zhao Y, Wan S, Mei Q, Wang H, Fu C, Li X, Zhao S, Xu X, Xiang T. Integrated analysis of genome-wide association studies and 3D epigenomic characteristics reveal the BMP2 gene regulating loin muscle depth in Yorkshire pigs. PLoS Genet 2023; 19:e1010820. [PMID: 37339141 DOI: 10.1371/journal.pgen.1010820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The lack of integrated analysis of genome-wide association studies (GWAS) and 3D epigenomics restricts a deep understanding of the genetic mechanisms of meat-related traits. With the application of techniques as ChIP-seq and Hi-C, the annotations of cis-regulatory elements in the pig genome have been established, which offers a new opportunity to elucidate the genetic mechanisms and identify major genetic variants and candidate genes that are significantly associated with important economic traits. Among these traits, loin muscle depth (LMD) is an important one as it impacts the lean meat content. In this study, we integrated cis-regulatory elements and genome-wide association studies (GWAS) to identify candidate genes and genetic variants regulating LMD. RESULTS Five single nucleotide polymorphisms (SNPs) located on porcine chromosome 17 were significantly associated with LMD in Yorkshire pigs. A 10 kb quantitative trait locus (QTL) was identified as a candidate functional genomic region through the integration of linkage disequilibrium and linkage analysis (LDLA) and high-throughput chromosome conformation capture (Hi-C) analysis. The BMP2 gene was identified as a candidate gene for LMD based on the integrated results of GWAS, Hi-C meta-analysis, and cis-regulatory element data. The identified QTL region was further verified through target region sequencing. Furthermore, through using dual-luciferase assays and electrophoretic mobility shift assays (EMSA), two SNPs, including SNP rs321846600, located in the enhancer region, and SNP rs1111440035, located in the promoter region, were identified as candidate SNPs that may be functionally related to the LMD. CONCLUSIONS Based on the results of GWAS, Hi-C, and cis-regulatory elements, the BMP2 gene was identified as an important candidate gene regulating variation in LMD. The SNPs rs321846600 and rs1111440035 were identified as candidate SNPs that are functionally related to the LMD of Yorkshire pigs. Our results shed light on the advantages of integrating GWAS with 3D epigenomics in identifying candidate genes for quantitative traits. This study is a pioneering work for the identification of candidate genes and related genetic variants regulating one key production trait (LMD) in pigs by integrating genome-wide association studies and 3D epigenomics.
Collapse
Affiliation(s)
- Yuanxin Miao
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China
| | - Yunxia Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Siqi Wan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Quanshun Mei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Heng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Tao Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Huang Y, Cai L, Duan Y, Zeng Q, He M, Wu Z, Zou X, Zhou M, Zhang Z, Xiao S, Yang B, Ma J, Huang L. Whole-genome sequence-based association analyses on an eight-breed crossed heterogeneous stock of pigs reveal the genetic basis of skeletal muscle fiber characteristics. Meat Sci 2022; 194:108974. [PMID: 36167013 DOI: 10.1016/j.meatsci.2022.108974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Skeletal muscle fiber characteristics (MFCs) have been extensively studied due to their importance to human health and athletic ability, as well as to the quantity and quality of livestock meat production. Hence, we performed a genome-wide association study (GWAS) on nine muscle fiber traits by using whole genome sequence data in an eight-breed crossed heterogeneous stock pig population. This GWAS revealed 67 quantitative trait loci (QTLs) for these traits. The most significant GWAS signal was detected in the region of Sus scrofa chromosome 12 (SSC12) containing the MYH gene family. Notably, we identified a significant SNP rs322008693 (P = 7.52E-09) as the most likely causal mutation for the total number of muscle fibers (TNMF) QTL on SSC1. The results of EMSA and luciferase assays indicated that the rs322008693 SNP resided in a functional element. These findings provide valuable molecular markers for pig meat production selection as well as for deciphering the genetic mechanisms of the muscle fiber physiology.
Collapse
Affiliation(s)
- Yizhong Huang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liping Cai
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanyu Duan
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingjie Zeng
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Maozhang He
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Wu
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoxiao Zou
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengqing Zhou
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhou Zhang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shijun Xiao
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Yang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junwu Ma
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lusheng Huang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Johnsson M, Jungnickel MK. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet Sel Evol 2021; 53:67. [PMID: 34461824 PMCID: PMC8404348 DOI: 10.1186/s12711-021-00662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. RESULTS For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. CONCLUSIONS Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Melissa K. Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
5
|
Wang K, Wu P, Wang S, Ji X, Chen D, Jiang A, Xiao W, Gu Y, Jiang Y, Zeng Y, Xu X, Li X, Tang G. Genome-wide DNA methylation analysis in Chinese Chenghua and Yorkshire pigs. BMC Genom Data 2021; 22:21. [PMID: 34134626 PMCID: PMC8207654 DOI: 10.1186/s12863-021-00977-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background The Chinese Chenghua pig (CHP) is a typical Chinese domestic fatty pig breed with superior meat quality characteristics, while the Yorkshire pig (YP) has the characteristics of fast growth and a high rate of lean meat. Long term natural selection and artificial selection resulted in great phenotypic differences between the two breeds, including growth, development, production performance, meat quality, and coat color. However, genome-wide DNA methylation differences between CHP and YP remain unclear. Results DNA methylation data were generated for muscle tissues of CHP and YP using reduced representation bisulfite sequencing (RRBS). In this study, a total of 2,416,211 CpG sites were identified. Besides, the genome-wide DNA methylation analysis revealed 722 differentially methylated regions (DMRs) and 466 differentially methylated genes (DMGs) in pairwise CHP vs. YP comparison. Six key genomic regions (Sus scrofa chromosome (SSC)1:253.47–274.23 Mb, SSC6:148.71–169.49 Mb, SSC7:0.25–9.86 Mb, SSC12:43.06–61.49 Mb, SSC14:126.43–140.95 Mb, and SSC18:49.17–54.54 Mb) containing multiple DMRs were identified, and differences of methylation patterns in these regions may be related to phenotypic differences between CHP and YP. Based on the functional analysis of DMGs, 8 DMGs (ADCY1, AGBL4, EXOC2, FUBP3, PAPPA2, PIK3R1, MGMT and MYH8) were considered as important candidate genes associated with muscle development and meat quality traits in pigs. Conclusions This study explored the difference in meat quality between CHP and YP from the epigenetic point of view, which has important reference significance for the local pork industry and pork food processing. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00977-0.
Collapse
Affiliation(s)
- Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiren Gu
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | | | - Xu Xu
- Sichuan Animal Husbandry Station, Chengdu, 610041, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
6
|
Huang Y, Zhou L, Zhang J, Liu X, Zhang Y, Cai L, Zhang W, Cui L, Yang J, Ji J, Xiao S, Ai H, Chen C, Ma J, Yang B, Huang L. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds. Meat Sci 2020; 168:108182. [DOI: 10.1016/j.meatsci.2020.108182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/26/2023]
|
7
|
Zhuang Z, Li S, Ding R, Yang M, Zheng E, Yang H, Gu T, Xu Z, Cai G, Wu Z, Yang J. Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations. PLoS One 2019; 14:e0218263. [PMID: 31188900 PMCID: PMC6561594 DOI: 10.1371/journal.pone.0218263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Loin muscle area (LMA) and loin muscle depth (LMD) are important traits influencing the production performance of breeding pigs. However, the genetic architecture of these two traits is still poorly understood. To discern the genetic architecture of LMA and LMD, a material consisting of 6043 Duroc pigs belonging to two populations with different genetic backgrounds was collected and applied in genome-wide association studies (GWAS) with a genome-wide distributed panel of 50K single nucleotide polymorphisms (SNPs). To improve the power of detection for common SNPs, we conducted a meta-analysis in these two pig populations and uncovered additional significant SNPs. As a result, we identified 75 significant SNPs for LMA and LMD on SSC6, 7, 12, 16, and 18. Among them, 25 common SNPs were associated with LMA and LMD. One pleiotropic quantitative trait locus (QTL), which was located on SSC7 with a 283 kb interval, was identified to affect LMA and LMD. Marker ALGA0040260 is a key SNP for this QTL, explained 1.77% and 2.48% of the phenotypic variance for LMA and LMD, respectively. Another genetic region on SSC16 (709 kb) was detected and displayed prominent association with LMA and the peak SNP, WU_10.2_16_35829257, contributed 1.83% of the phenotypic variance for LMA. Further bioinformatics analysis determined eight promising candidate genes (GCLC, GPX8, DAXX, FGF21, TAF11, SPDEF, NUDT3, and PACSIN1) with functions in glutathione metabolism, adipose and muscle tissues development and lipid metabolism. This study provides the first GWAS for the LMA and LMD of Duroc breed to analyze the underlying genetic variants through a large sample size. The findings further advance our understanding and help elucidate the genetic architecture of LMA, LMD and growth-related traits in pigs.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shaoyun Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Huaqiang Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
- * E-mail: (JY); (ZW)
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
- * E-mail: (JY); (ZW)
| |
Collapse
|
8
|
Genome-wide association studies for seven production traits highlight genomic regions useful to dissect dry-cured ham quality and production traits in Duroc heavy pigs. Animal 2018; 12:1777-1784. [PMID: 29706143 DOI: 10.1017/s1751731118000757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protected designation of origin dry-cured hams are obtained from heavy pigs (slaughtered at about 160 kg of live weight). A specific breeding program designed to improve meat quality for this production has included as key traits the level of intermuscular fat between the leg muscles and ham weight loss during the seasoning period together with a balance between fat and lean cuts. In this study we carried out genome-wide association studies for seven traits used in the genetic merit of Italian Duroc heavy pigs, five related to meat and carcass quality traits (visible intermuscular fat, ham weight loss at first salting, backfat thickness, ham weight and lean cuts), and two related to performance and efficiency traits (average daily gain and feed : gain ratio). A total of 573 performance-tested pigs were genotyped with the Illumina PorcineSNP60 BeadChip and genome-wide association analyses were carried out using the Bayes B approach with the 1 Mb window option of GenSel and random residuals for each of the seven traits. Detected windows were supported by independent single nucleotide polymorphism analyses with a linear mixed model (LMM) approach on the same animals for the same traits. A total of 30 windows identifying different quantitative trait loci (QTL) were detected and among those, 27 were confirmed by LMM in one of these traits. Among the confirmed windows, three QTL were reported for visible intermuscular fat, seven for ham weight loss at first salting and five and four for backfat thickness and lean cut, respectively. A total of eight QTL were detected for the other production traits. No overlapping QTL were reported except for one window on porcine chromosome 10 between lean cuts and ham weight that contained the CACNB2 gene that has been already associated with loin marbling score in other Duroc pigs. Several regions contained genes that have been already associated with production traits in other pig breeds, including Duroc lines, related to fat deposition or muscle structure. This work reports, for the first time, genome-wide association study results for several traits in Italian Duroc heavy pigs. These results will be useful to dissect the genetic basis for dry-cured ham production traits that determine the total genetic merit index of Italian Duroc pigs.
Collapse
|