1
|
El Badaoui L, Barr AJ. Analysis of Receptor-Type Protein Tyrosine Phosphatase Extracellular Regions with Insights from AlphaFold. Int J Mol Sci 2024; 25:820. [PMID: 38255894 PMCID: PMC10815196 DOI: 10.3390/ijms25020820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The receptor-type protein tyrosine phosphatases (RPTPs) are involved in a wide variety of physiological functions which are mediated via their diverse extracellular regions. They play key roles in cell-cell contacts, bind various ligands and are regulated by dimerization and other processes. Depending on the subgroup, they have been described as everything from 'rigid rods' to 'floppy tentacles'. Here, we review current experimental structural knowledge on the extracellular region of RPTPs and draw on AlphaFold structural predictions to provide further insights into structure and function of these cellular signalling molecules, which are often mutated in disease and are recognised as drug targets. In agreement with experimental data, AlphaFold predicted structures for extracellular regions of R1, and R2B subgroup RPTPs have an extended conformation, whereas R2B RPTPs are twisted, reflecting their high flexibility. For the R3 PTPs, AlphaFold predicts that members of this subgroup adopt an extended conformation while others are twisted, and that certain members, such as CD148, have one or more large, disordered loop regions in place of fibronectin type 3 domains suggested by sequence analysis.
Collapse
Affiliation(s)
| | - Alastair J. Barr
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| |
Collapse
|
2
|
Biswas S, Manekar S, Bakshi SR. A Case Study on PPM1D and 9 Other Shared Germline Alterations in a Family. Asian Pac J Cancer Prev 2023; 24:2129-2134. [PMID: 37378944 PMCID: PMC10505862 DOI: 10.31557/apjcp.2023.24.6.2129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The use of high-throughput genotyping techniques has enabled us to identify the rare germline genetic variants with different pathogenicity and penetrance, and understand their role in cancer predisposition. We report here a familial cancer case, a study from Western Indian. METHODS NGS-WES was carried out in a lung cancer patient who has a family history of multiple cancers across generations, including tongue, lung, brain, cervical, urothelial, and esophageal cancer. The results were validated by data mining from available data bases. I-TASSER, RasMol and PyMol were used for protein structure modelling. RESULTS The sequencing by NGS-WES revealed PPM1D c.1654C>T (p.Arg552Ter) mutation in hotspot region exon 6 leading to sudden protein truncation and loss of the C-terminal, due to the substitution of C>T. This mutation was classified as a variant of uncertain significance (VUS), due to limited data on lung cancer, The three unaffected siblings of proband did not show any pathogenic variants and comparative analysis of the four siblings indicate 9 shared genetic variants, classified as benign as per ClinVar. CONCLUSION PPM1D constitutional genetic alterations are rare and uncommon in different ethnic populations. This gene encodes a phosphatase playing role in regulating the P53 tumor suppressor pathway and DNA damage response. Genetic alterations in the PPM1D gene maybe linked to history of gliomas, breast cancer, and ovarian cancer onset in the proband's family. .
Collapse
Affiliation(s)
- Shristi Biswas
- Institute of Science, Nirma University, Ahmadabad, Gujarat India.
| | - Swati Manekar
- Institute of Technology, Nirma University, Gujarat India.
| | | |
Collapse
|
3
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Vogelaar IP, Greer S, Wang F, Shin G, Lau B, Hu Y, Haraldsdottir S, Alvarez R, Hazelett D, Nguyen P, Aguirre FP, Guindi M, Hendifar A, Balcom J, Leininger A, Fairbank B, Ji H, Hitchins MP. Large Cancer Pedigree Involving Multiple Cancer Genes including Likely Digenic MSH2 and MSH6 Lynch Syndrome (LS) and an Instance of Recombinational Rescue from LS. Cancers (Basel) 2022; 15:cancers15010228. [PMID: 36612224 PMCID: PMC9818763 DOI: 10.3390/cancers15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Lynch syndrome (LS), caused by heterozygous pathogenic variants affecting one of the mismatch repair (MMR) genes (MSH2, MLH1, MSH6, PMS2), confers moderate to high risks for colorectal, endometrial, and other cancers. We describe a four-generation, 13-branched pedigree in which multiple LS branches carry the MSH2 pathogenic variant c.2006G>T (p.Gly669Val), one branch has this and an additional novel MSH6 variant c.3936_4001+8dup (intronic), and other non-LS branches carry variants within other cancer-relevant genes (NBN, MC1R, PTPRJ). Both MSH2 c.2006G>T and MSH6 c.3936_4001+8dup caused aberrant RNA splicing in carriers, including out-of-frame exon-skipping, providing functional evidence of their pathogenicity. MSH2 and MSH6 are co-located on Chr2p21, but the two variants segregated independently (mapped in trans) within the digenic branch, with carriers of either or both variants. Thus, MSH2 c.2006G>T and MSH6 c.3936_4001+8dup independently confer LS with differing cancer risks among family members in the same branch. Carriers of both variants have near 100% risk of transmitting either one to offspring. Nevertheless, a female carrier of both variants did not transmit either to one son, due to a germline recombination within the intervening region. Genetic diagnosis, risk stratification, and counseling for cancer and inheritance were highly individualized in this family. The finding of multiple cancer-associated variants in this pedigree illustrates a need to consider offering multicancer gene panel testing, as opposed to targeted cascade testing, as additional cancer variants may be uncovered in relatives.
Collapse
Affiliation(s)
- Ingrid P. Vogelaar
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephanie Greer
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Fan Wang
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
- School of Public Health (Epidemiology), Harbin Medical University, Harbin 150088, China
| | - GiWon Shin
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Billy Lau
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Yajing Hu
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Sigurdis Haraldsdottir
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Rocio Alvarez
- Bioinformatics and Functional Genomics Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dennis Hazelett
- Bioinformatics and Functional Genomics Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Nguyen
- Bioinformatics and Functional Genomics Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Francesca P. Aguirre
- Bioinformatics and Functional Genomics Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Hendifar
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jessica Balcom
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | | | - Beth Fairbank
- Lynch Syndrome Australia, The Summit, QLD 4377, Australia
| | - Hanlee Ji
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
- Stanford Genome Technology Center West, 1050 Arastradero, Palo Alto, CA 94304, USA
| | - Megan P. Hitchins
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
- Bioinformatics and Functional Genomics Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: ; Tel.: +310-423-8785
| |
Collapse
|
5
|
The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Cells 2022; 12:cells12010008. [PMID: 36611803 PMCID: PMC9818648 DOI: 10.3390/cells12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ), also known as DEP-1, HPTPη, or CD148, belongs to the R3 subfamily of receptor protein tyrosine phosphatases (RPTPs). It was first identified as an antioncogene due to its protein level being significantly downregulated in most epithelial tumors and cancer cell lines (e.g., colon, lung, thyroid, breast, and pancreas). PTPRJ regulates mouse optic nerve projection by inhibiting the phosphorylation of the erythropoietin-producing hepatocellular carcinoma (Eph) receptor and abelson murine leukemia viral oncogene homolog 1 (c-Abl). PTPRJ is crucial for metabolism. Recent studies have demonstrated that PTPRJ dephosphorylates JAK2 at positions Y813 and Y868 to inhibit leptin signaling. Akt is more phosphorylated at the Ser473 and Thr308 sites in Ptprj-/- mice, suggesting that PTPRJ may be a novel negative regulator of insulin signaling. PTPRJ also plays an important role in balancing the pro- and anti-osteoclastogenic activity of the M-CSF receptor (M-CSFR), and in maintaining NFATc1 expression during the late stages of osteoclastogenesis to promote bone-resorbing osteoclast (OCL) maturation. Furthermore, multiple receptor tyrosine kinases (RTKs) as substrates of PTPRJ are probably a potential therapeutic target for many types of diseases, such as cancer, neurodegenerative diseases, and metabolic diseases, by inhibiting their phosphorylation activity. In light of the important roles that PTPRJ plays in many diseases, this review summarizes the structural features of the protein, its expression pattern, and the physiological and pathological functions of PTPRJ, to provide new ideas for treating PTPRJ as a potential therapeutic target for related metabolic diseases and cancer.
Collapse
|
6
|
Balabanski L, Serbezov D, Nikolova D, Antonova O, Nesheva D, Hammoudeh Z, Vazharova R, Karachanak-Yankova S, Staneva R, Mihaylova M, Damyanova V, Hadjidekova S, Toncheva D. Centenarian Exomes as a Tool for Evaluating the Clinical Relevance of Germline Tumor Suppressor Mutations. Technol Cancer Res Treat 2020; 19:1533033820911082. [PMID: 32233832 PMCID: PMC7132786 DOI: 10.1177/1533033820911082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objectives: The aim of the present study was to evaluate the clinical relevance of mutations in
tumor suppressor genes using whole-exome sequencing data from centenarians and young
healthy individuals. Methods: Two pools, one of centenarians and one of young individuals, were constructed and
whole-exome sequencing was performed. We examined the whole-exome sequencing data of
Bulgarian individuals for carriership of tumor suppressor gene variants. Results: Of all variants annotated in both pools, 5080 (0.06%) are variants in tumor suppressor
genes but only 46 show significant difference in allele frequencies between the two
studied groups. Four variants (0.004%) are pathogenic/risk factors according to single
nucleotide polymorphism database: rs1566734 in PTPRJ, rs861539 in
XRCC3, rs203462 in AKAP10, and rs486907 in
RNASEL. Discussion: Based on their high minor allele frequencies and presence in the centenarian group, we
could reclassify them from pathogenic/risk factors to benign. Our study shows that
centenarian exomes can be used for re-evaluating the clinically uncertain variants.
Collapse
Affiliation(s)
- Lubomir Balabanski
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria.,Hospital"Malinov," Sofia, Bulgaria
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Dragomira Nikolova
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Olga Antonova
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Desislava Nesheva
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Zora Hammoudeh
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Radoslava Vazharova
- Hospital"Malinov," Sofia, Bulgaria.,Medical Faculty, Sofia University "St Kliment Ohridski," Sofia, Bulgaria
| | | | - Rada Staneva
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Marta Mihaylova
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria.,Bulgarian Academy of Science-BAS, Sofia, Bulgaria
| | - Vera Damyanova
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Savina Hadjidekova
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria.,Bulgarian Academy of Science-BAS, Sofia, Bulgaria
| |
Collapse
|
7
|
Gholami M, M Amoli M. Comments on: "Meta-analysis of association between Arg326Gln (rs1503185) and Gln276Pro (rs1566734) polymorphisms of PTPRJ gene and cancer risk". J Appl Genet 2019; 60:431-433. [PMID: 31301025 DOI: 10.1007/s13353-019-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/13/2019] [Accepted: 06/30/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|