1
|
Tseng MC, Lee YH, Yen TB, Li SM. Genome-wide characterization of microsatellites in cobia Rachycentron canadum (Linnaeus, 1766): Survey and analysis of their abundance and diversity. JOURNAL OF FISH BIOLOGY 2024; 104:44-55. [PMID: 37658731 DOI: 10.1111/jfb.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
The cobia Rachycentron canadum, mainly distributed in the warm waters of tropical and subtropical regions around the world, remains a fish of considerable economic importance. Detailed diversity and the number of microsatellite sequences in the cobia genome are still unintelligible. The primary aim of this work was to identify and quantify the miscellaneous SSR sequences in the cobia genome. More than 280,000 sequences were sequenced and screened using next-generation sequencing technology and microsatellite identification. Perfect mononucleotide repeats, dinucleotide microsatellites, and trinucleotide microsatellites contain (A)10 /(T)10 , (AC)6 /(TG)6 , and (AAT)5-32 as the largest number of motifs in each type of microsatellite, respectively. The tetranucleotide and pentanucleotide microsatellites (TTM and PTM) consist of the largest number of motifs of both (ATCT)5-32 and (TCAT)5-31 in TTMs, and (CTCTC)5-9 in PTMs, whereas the hexanucleotide microsatellites are rarely observed in the cobia genome. All c. 38000 sequences of composite microsatellites are extremely diverse, including compound (11.71%), interrupted compound (71.77%), complex (0.45%), and interrupted complex (16.07%). In this study, we developed a convenient and useful recording system for writing down and categorizing diverse composite microsatellite types. This system will provide great support for exploring repeat origins, evolutionary mechanisms, and the application of polymorphic microsatellites.
Collapse
Affiliation(s)
- Mei-Chen Tseng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Yen-Hung Lee
- Tungkang Aquaculture Research Center, Fisheries Research Institute, MOA, Pingtung 928, Taiwan, R.O.C
| | - Tsair-Bor Yen
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Shu-Ming Li
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| |
Collapse
|
2
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
3
|
Comparative genomics reveals genus specific encoding of amino acids by tri-nucleotide SSRs in human pathogenic Streptococcus and Staphylococcus bacteria. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Wu Z, Gong H, Zhou Z, Jiang T, Lin Z, Li J, Xiao S, Yang B, Huang L. Mapping short tandem repeats for liver gene expression traits helps prioritize potential causal variants for complex traits in pigs. J Anim Sci Biotechnol 2022; 13:8. [PMID: 35034641 PMCID: PMC8762894 DOI: 10.1186/s40104-021-00658-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Short tandem repeats (STRs) were recently found to have significant impacts on gene expression and diseases in humans, but their roles on gene expression and complex traits in pigs remain unexplored. This study investigates the effects of STRs on gene expression in liver tissues based on the whole-genome sequences and RNA-Seq data of a discovery cohort of 260 F6 individuals and a validation population of 296 F7 individuals from a heterogeneous population generated from crosses among eight pig breeds. RESULTS We identified 5203 and 5868 significantly expression STRs (eSTRs, FDR < 1%) in the F6 and F7 populations, respectively, most of which could be reciprocally validated (π1 = 0.92). The eSTRs explained 27.5% of the cis-heritability of gene expression traits on average. We further identified 235 and 298 fine-mapped STRs through the Bayesian fine-mapping approach in the F6 and F7 pigs, respectively, which were significantly enriched in intron, ATAC peak, compartment A and H3K4me3 regions. We identified 20 fine-mapped STRs located in 100 kb windows upstream and downstream of published complex trait-associated SNPs, which colocalized with epigenetic markers such as H3K27ac and ATAC peaks. These included eSTR of the CLPB, PGLS, PSMD6 and DHDH genes, which are linked with genome-wide association study (GWAS) SNPs for blood-related traits, leg conformation, growth-related traits, and meat quality traits, respectively. CONCLUSIONS This study provides insights into the effects of STRs on gene expression traits. The identified eSTRs are valuable resources for prioritizing causal STRs for complex traits in pigs.
Collapse
Affiliation(s)
- Zhongzi Wu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huanfa Gong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Zhou
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Jiang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ziqi Lin
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jing Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
5
|
Li S, Li J, Zhou H, Xiong L. Research progress of IGF-1 and cerebral ischemia. IBRAIN 2021; 7:57-67. [PMID: 37786870 PMCID: PMC10528794 DOI: 10.1002/j.2769-2795.2021.tb00066.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/20/2021] [Indexed: 10/04/2023]
Abstract
Cerebral ischemic disease is a group of diseases that cause insufficient blood supply to the cerebrum, cerebellum or brain stem for different reasons, resulting in corresponding nervous system symptoms. Cardiovascular disease is the leading cause of death in the world. Among them, the death caused by cerebral ischemia accounts for the vast majority, and it is one of the fatal diseases in the middle-aged and elderly at present. Epidemiologic studies have projected increasing mortality due to cardiovascular disease worldwide (about 23.3 million people by 2030) because of the aging population. However, related studies have shown that insulin-like growth factor I (IGF-1) is a multifunctional cell proliferation regulator. It plays an important role in cerebral ischemia. It is effective in promoting cell differentiation, proliferation and individual development. Studies have shown that IGF-1 signaling pathway is a key pathway controlling cell growth and survival. There may be five mechanisms in cerebral ischemia: prevention of intracellular calcium overload, inhibition of the upregulation of nNOS, IGF-1upregulations activating HIF-1α, regulation of Bcl-2 to resist apoptosis, and enhancement of vascular endothelial function. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3)/Ca2+. IGF-1 plays an important role in cerebral ischemia and myocardial ischemia, mainly by activating downstream of IGF-1, controlling cell death and differentiation or transcription work, improving the function of heart muscle cells, reducing the myocardial cell apoptosis induced by myocardial infarction, regulating endogenous protection and restoration of cerebral ischemia injury, thus protecting cerebral and myocardial injury. Related studies have shown that bcl-2 exerts great influence on both cerebral ischemia and myocardial ischemia. Therefore, the relevant pathways and targets of cerebral ischemia and myocardial ischemia and the role of IGF-1 in protecting the heart are reviewed in this paper.
Collapse
Affiliation(s)
- Shun‐Lian Li
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouPeople's Republic of China
| | - Jing Li
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
| | - Hong‐Su Zhou
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
| | - Liu‐Lin Xiong
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouPeople's Republic of China
| |
Collapse
|
6
|
Huang G, Chen J, Liu J, Zhang X, Duan H, Fang Q. MiR-935/HIF1α Feedback Loop Inhibits the Proliferation and Invasiveness of Glioma. Onco Targets Ther 2020; 13:10817-10828. [PMID: 33122920 PMCID: PMC7591158 DOI: 10.2147/ott.s244409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Objective The biological functions and molecular mechanisms of miR-935 have been widely investigated in various types of cancer. The aim of the present study was to explore the function of miR-935 in glioma. Methods Bioinformatic analysis and quantitative real-time fluorescent PCR (qRT-PCR) were used to determine the expression of miR-935 in glioma tissues and glioma cell lines. Chi-square test was performed to analyze the relationship between the expression of miR-935 and clinical traits. CCK-8 assay, colony formation assay, cell cycle analysis and subcutaneous tumorigenesis model in nude mice were conducted to determine the effects of miR-935 on the proliferation of glioma cells both in vitro and in vivo. Wound healing and transwell assays were used to detect the effects of miR-935 on the migration and invasion of glioma cells in vitro. The relationship between miR-935 and HIF1α was analyzed using bioinformatics, luciferase reporter assay and Western blotting. Results The expression of miR-935 was lower in glioma tissues than in the adjacent tissues, and in cell lines than in the normal human astrocytes (NHAs), and the low expression levels of miR-935 predicted a poor outcome. Exogenous overexpression of miR-935 inhibited the proliferation of glioma cells both in vitro and in vivo, and suppressed the migration and invasion of glioma cells in vitro. HIF1α was identified as the target of miR-935, whereas miR-935 overexpression decreased the expression of HIF1α and its target genes VEGF, MCL1 and GLUT1. Strikingly, overexpression of HIF1α significantly decreased the expression of miR-935, whereas silencing HIF1α increased the expression of miR-935. Similarly, HIF1α overexpression remarkably reversed the inhibitory effects of miR-935 on the proliferation, migration and invasion of glioma cells. Conclusion Overall, present study reveals the presence of miR-935/HIF1α feedback loop in glioma, which inhibits the development of glioma. This feedback loop may be a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Guangjing Huang
- Department of Biomedicine, Medical College of Guizhou University, Guiyang, Guizhou, 550000, People's Republic of China.,Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Jie Chen
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Jing Liu
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Xiaoyan Zhang
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Haijie Duan
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Qian Fang
- Medical College of Guizhou University, Guiyang, Guizhou, 550000, People's Republic of China.,Nursing Department, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| |
Collapse
|