1
|
Atik A, Arslanoglu A, Yalcin T. Gas-phase fragmentation reactions of a 7 ions containing a glutamine residue. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4776. [PMID: 34268823 DOI: 10.1002/jms.4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The gas-phase fragmentation reactions of the a7 ions derived from glutamine (Q) containing model heptapeptides have been studied in detail with low-energy collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). Specifically, the positional effect of the Q residue has been investigated on the fragmentation reactions of a7 ions. The study involves two sets of permuted isomers of the Q containing model heptapeptides. The first set contains the QAAAAAA sequence, and the second set involves of QYAGFLV sequence, where the position of the Q residue is changed from N- to C-terminal gradually for both peptide series. An intense loss of ammonia from the a7 ions followed by internal amino acid eliminations strongly supports forming the imine-amides structure via cyclization/rearrangement reaction for all studied a7 ions. This is in agreement with the pioneering study reported by Bythell et al. (2010, 10.1021/ja101556g). A novel rearrangement reaction is detected upon fragmentation of imine-amide structure, which yields a protonated C-terminal amidated hexapeptide excluding the Q residue. A possible fragmentation mechanism was proposed to form the protonated C-terminal amidated hexapeptide, assisted via nucleophilic attack of the side chain amide nitrogen of the Q residue on its N-protonated imine carbon atom of the rearranged imine-amide structure. HIGHLIGHTS: The gas-phase fragmentation reactions of a7 ions obtained from protonated model peptides containing glutamine residue were studied by ESI-MS/MS. A rearranged imine-amide structure is the predominant even for a7 ions. Novel rearrangement reaction is observed which forms a protonated C-terminal amidated hexapeptide excluding Q residue upon fragmentation of the imine-amide structure.
Collapse
Affiliation(s)
- Ahmet Atik
- Department of Natural Sciences, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Biotechnology Group, Turgut Pharmaceuticals, Istanbul, Turkey
| | - Alper Arslanoglu
- Departmen of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Talat Yalcin
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
- Integrated Research Centers, National Mass Spectrometry Application and Research Center, Izmir, Turkey
| |
Collapse
|
2
|
Kuchibhotla B, Kola SR, Medicherla JV, Cherukuvada SV, Dhople VM, Nalam MR. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1216-1226. [PMID: 28349438 DOI: 10.1007/s13361-017-1606-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bhanuramanand Kuchibhotla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sankara Rao Kola
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Jagannadham V Medicherla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Swamy V Cherukuvada
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Vishnu M Dhople
- Department of Functional Genomics, University Medicine Greifswald, Interface Institute Genetics & Functional Genomics, D-17475, Greifswald, Germany
| | - Madhusudhana Rao Nalam
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
3
|
Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1047:75-83. [PMID: 28063777 DOI: 10.1016/j.jchromb.2016.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/02/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022]
Abstract
O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions.
Collapse
|
4
|
Atik AE, Hernandez O, Maître P, Yalcin T. Specific rearrangement reactions of acetylated lysine containing peptide bn (n = 4-7) ion series. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1290-1297. [PMID: 25476947 DOI: 10.1002/jms.3462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 06/04/2023]
Abstract
Characterization of ε-N-acetylated lysine containing peptides, one of the most prominent post-translational modifications of proteins, is an important goal for tandem mass spectrometry experiments. A systematic study for the fragmentation reactions of b ions derived from ε-N-acetyllysine containing model octapeptides (KAc YAGFLVG and YAKAc GFLVG) has been examined in detail. Collision-induced dissociation (CID) mass spectra of bn (n = 4-7) fragments of ε-N-acetylated lysine containing peptides are compared with those of N-terminal acetylated and doubly acetylated (both ε-N and N-terminal) peptides, as well as acetyl-free peptides. Both direct and nondirect fragments are observed for acetyl-free and singly acetylated (ε-N or N-terminal) peptides. In the case of ε-N-acetylated lysine containing peptides, however, specific fragment ions (m/z 309, 456, 569 and 668) are observed in CID mass spectra of bn (n = 4-7) ions. The CID mass spectra of these four ions are shown to be identical to those of selected protonated C-terminal amidated peptides. On this basis, a new type of rearrangement chemistry is proposed to account for the formation of these fragment ions, which are specific for ε-N-acetylated lysine containing peptides. Consistent with the observation of nondirect fragments, it is proposed that the b ions undergo head-to-tail macrocyclization followed by ring opening. The proposed reaction pathway assumes that bn (n = 4-7) of ε-N-acetylated lysine containing peptides has a tendency to place the KAc residue at the C-terminal position after macrocyclization/reopening mechanism. Then, following the loss of CO, it is proposed that the marker ions are the result of the loss of an acetyllysine imine as a neutral fragment.
Collapse
Affiliation(s)
- A Emin Atik
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla-Izmir, Turkey
| | | | | | | |
Collapse
|
5
|
Chawner R, Holman SW, Gaskell SJ, Eyers CE. Peptide scrambling during collision-induced dissociation is influenced by N-terminal residue basicity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1927-1938. [PMID: 25135610 PMCID: PMC4197365 DOI: 10.1007/s13361-014-0968-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 06/03/2023]
Abstract
'Bottom up' proteomic studies typically use tandem mass spectrometry data to infer peptide ion sequence, enabling identification of the protein whence they derive. The majority of such studies employ collision-induced dissociation (CID) to induce fragmentation of the peptide structure giving diagnostic b-, y-, and a- ions. Recently, rearrangement processes that result in scrambling of the original peptide sequence during CID have been reported for these ions. Such processes have the potential to adversely affect ion accounting (and thus scores from automated search algorithms) in tandem mass spectra, and in extreme cases could lead to false peptide identification. Here, analysis of peptide species produced by Lys-N proteolysis of standard proteins is performed and sequences that exhibit such rearrangement processes identified. The effect of increasing the gas-phase basicity of the N-terminal lysine residue through derivatization to homoarginine toward such sequence scrambling is then assessed. The presence of a highly basic homoarginine (or arginine) residue at the N-terminus is found to disfavor/inhibit sequence scrambling with a coincident increase in the formation of b(n-1)+H(2)O product ions. Finally, further analysis of a sequence produced by Lys-C proteolysis provides evidence toward a potential mechanism for the apparent inhibition of sequence scrambling during resonance excitation CID.
Collapse
Affiliation(s)
- Ross Chawner
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN UK
- Waters Corporation, Stamford Avenue, Wilmslow, SK9 4AX UK
| | - Stephen W. Holman
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | | | - Claire E. Eyers
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| |
Collapse
|
6
|
Li H, Snelling JR, Barrow MP, Scrivens JH, Sadler PJ, O'Connor PB. Mass spectrometric strategies to improve the identification of Pt(II)-modification sites on peptides and proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1217-27. [PMID: 24845349 DOI: 10.1007/s13361-014-0877-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/17/2014] [Accepted: 02/23/2014] [Indexed: 05/22/2023]
Abstract
To further explore the binding chemistry of cisplatin (cis-Pt(NH3)2Cl2) to peptides and also establish mass spectrometry (MS) strategies to quickly assign the platinum-binding sites, a series of peptides with potential cisplatin binding sites (Met(S), His(N), Cys(S), disulfide, carboxyl groups of Asp and Glu, and amine groups of Arg and Lys, were reacted with cisplatin, then analyzed by electron capture dissociation (ECD) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Radical-mediated side-chain losses from the charge-reduced Pt-binding species (such as CH3S(•) or CH3SH from Met, SH(•) from Cys, CO2 from Glu or Asp, and NH2(•) from amine groups) were found to be characteristic indicators for rapid and unambiguous localization of the Pt-binding sites to certain amino acid residues. The method was then successfully applied to interpret the top-down ECD spectrum of an inter-chain Pt-crosslinked insulin dimer, insulin + Pt(NH3)2 + insulin (>10 kDa). In addition, ion mobility MS shows that Pt binds to multiple sites in Substance P, generating multiple conformers, which can be partially localized by collisionally activated dissociation (CAD). Platinum(II) (Pt(II)) was found to coordinate to amine groups of Arg and Lys, but not to disulfide bonds under the conditions used. The coordination of Pt to Arg or Lys appears to arise from the migration of Pt(II) from Met(S) as shown by monitoring the reaction products at different pH values by ECD. No direct binding of cisplatin to amine groups was observed at pH 3 ~ 10 unless Met residues were present in the sequence, but noncovalent interactions between cisplatin hydrolysis and amination [Pt(NH3)4](2+) products and these peptides were found regardless of pH.
Collapse
Affiliation(s)
- Huilin Li
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
7
|
Harrison AG. Effect of the sarcosine residue on sequence scrambling in peptide b(5) ions. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:161-167. [PMID: 24464544 DOI: 10.1002/jms.3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
The effect of N-methylation on sequence scrambling in the fragmentation of b5 ions has been investigated by studying a variety of peptides containing sarcosine (N-methylglycine). The product ion mass spectra for the b5 ions derived from Sar-A-A-A-Y-A and Sar-A-A-Y-A-A show only minor signals for non-direct sequence ions the major fragmentation reactions occurring from the unrearranged structures. This is in contrast to the b5 ions where the Sar residue is replaced by Ala and sequence scrambling occurs. The b5 ion derived from Y-Sar-A-A-A-A shows a product ion mass spectrum essentially identical to the spectrum of the b5 ion derived from Sar-A-A-A-Y-A, indicating that in the former case macrocyclization has occurred but the macrocyclic form shows a strong preference to reopen to put the Sar residue in the N-terminal position. Similar results were obtained in the comparison of b5 ions derived from A-Sar-A-A-Y-A and Sar-A-A-Y-A-A. The product ion mass spectra of the MH(+) ions of Y-Sar-A-A-A-A and A-Sar-A-A-Y-A show substantial signals for non-direct sequence ions indicating that fragmentation of the MH(+) ions channels extensively through the respective b5 ions and further fragmentation of these species.
Collapse
Affiliation(s)
- Alex G Harrison
- Department of Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Jia C, Wu Z, Lietz CB, Liang Z, Cui Q, Li L. Gas-phase ion isomer analysis reveals the mechanism of peptide sequence scrambling. Anal Chem 2013; 86:2917-24. [PMID: 24313304 DOI: 10.1021/ac401578p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values, which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M → (c)b) pathway is less energetically (or kinetically) favored.
Collapse
Affiliation(s)
- Chenxi Jia
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | | | | | | | | | | |
Collapse
|
9
|
Atik AE, Yalcin T. Protonated dipeptide losses from b(5) and b(4) ions of side chain hydroxyl group containing pentapeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1543-1554. [PMID: 23900715 DOI: 10.1007/s13361-013-0694-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
In this study, C-terminal protonated dipeptide eliminations were reported for both b5 and b4 ions of side chain hydroxyl group (-OH) containing pentapeptides. The study utilized the model C-terminal amidated pentapeptides having sequences of XGGFL and AXVYI, where X represents serine (S), threonine (T), glutamic acid (E), aspartic acid (D), or tyrosine (Y) residue. Upon low-energy collision-induced dissociation (CID) of XGGFL (where X = S, T, E, D, and Y) model peptide series, the ions at m/z 279 and 223 were observed as common fragments in all b5 and b4 ion (except b4 ion of YGGFL) mass spectra, respectively. By contrast, peptides, namely SMeGGFL-NH2 and EOMeGGFL-NH2, did not show either the ion at m/z 279 or the ion at m/z 223. It is shown that the side chain hydroxyl group is required for the possible mechanism to take place that furnishes the protonated dipeptide loss from b5 and b4 ions. In addition, the ions at m/z 295 and 281 were detected as common fragments in all b5 and b4 ion (except b4 ion of AYVYI) mass spectra, respectively, for AXVYI model peptide series. The MS(4) experiments exhibited that the fragment ions at m/z 279, 223, 295, and 281 entirely reflect the same fragmentation behavior of [M + H](+) ion generated from commercial dipeptides FL-OH, GF-OH, YI-OH, and VY-OH. These novel eliminations reported here for b5 and b4 ions can be useful in assigning the correct and reliable peptide sequences for high-throughput proteomic studies.
Collapse
Affiliation(s)
- A Emin Atik
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla-Izmir, Turkey
| | | |
Collapse
|
10
|
Harrison AG, Tasoglu C, Yalcin T. Non-direct sequence ions in the tandem mass spectrometry of protonated peptide amides--an energy-resolved study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1565-1572. [PMID: 23918462 DOI: 10.1007/s13361-013-0707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
The fragmentation reactions of the MH(+) ions of Leu-enkephalin amide and a variety of heptapeptide amides have been studied in detail as a function of collision energy using a QqToF beam type mass spectrometer. The initial fragmentation of the protonated amides involves primarily formation of bn ions, including significant loss of NH3 from the MH(+) ions. Further fragmentation of these bn ions occurs following macrocyclization/ring opening leading in many cases to bn ions with permuted sequences and, thus, to formation of non-direct sequence ions. The importance of these non-direct sequence ions increases markedly with increasing collision energy, making peptide sequence determination difficult, if not impossible, at higher collision energies.
Collapse
Affiliation(s)
- Alex G Harrison
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada,
| | | | | |
Collapse
|
11
|
Harrison AG. Fragmentation reactions of methionine-containing protonated octapeptides and fragment ions therefrom: an energy-resolved study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1555-1564. [PMID: 23943431 DOI: 10.1007/s13361-013-0706-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
The fragmentation reactions of the MH(+) ions as well as the b7, a7, and a7* ions derived therefrom have been studied in detail for the octapeptides MAAAAAAA, AAMAAAAA, AAAAMAAA, and AAAAAAMA. Ionization was by electrospray using a QqToF mass spectrometer, which allowed a study of the evolution of the fragmentation channels as a function of the collision energy. Not surprisingly, the product ion mass spectra for the b7 ions are independent of the original precursor sequence, indicating macrocyclization and reopening to the same mixture of protonated oxazolones prior to fragmentation. The results show that this sequence scrambling results in a distinct preference to place the Met residue in the C-terminal position of the protonated oxazolones. The a7 and a7* ions also produce product ion mass spectra independent of the original peptide sequence. The results for the a7 ions indicate that fragmentation occurs primarily from an amide structure analogous to that observed for a4 ions (Bythell et al. in J Am Chem Soc 132:14766-14779, 2010). Clearly, the rearrangement reaction they have proposed applies equally well to an ions as large as a7. The major fragmentation modes of the MH(+) ions at low collision energies produce b7, b6, and b5 ions. As the collision energy is increased further fragmentation of these primary products produces, in part, non-direct sequence ions, which become prominent at lower m/z values, particularly for the peptides with the Met residue near the N-terminus.
Collapse
Affiliation(s)
- Alex G Harrison
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada,
| |
Collapse
|
12
|
Dong NP, Liang YZ, Yi LZ. Investigation of scrambled ions in tandem mass spectra. Part 1. Statistical characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1209-1220. [PMID: 22539146 DOI: 10.1007/s13361-012-0380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
Scrambled ions have become the focus of recent investigations of peptide fragmentation. Here, an investigation of more than 390,000 high quality CID mass spectra is presented to explore the extent of scrambled ions in mass spectra and the possible fragmentation rules during scramble reactions. For the former, scrambled ions generally make up more than 10 % of mass spectra in number, although the abundances are less than 0.1 of the base peak. For the latter, relatively preferential re-opening sites were found for aliphatic residues Ala, Ile, Leu, and other residues such as Met, Gln, Ser, Phe, and Thr, whereas disfavored sites were found for basic residues Arg, Lys, and His, and Trp for both scrambled b and a ions. Similar preferential order in re-opening reaction was found in the reaction of losing internal residues when cleavage occurs at C-terminal side of 20 residues. However, when cleavage occurs at N-terminal side, Glu, Phe, and Trp become the most preferential sites. These results provide a deep insight into cleavage rules during scramble reactions for prediction of peptide mass spectra. Also, an additional investigation of whether scrambled ions could help discriminate false identifications from correct identifications was performed. Probing the number fraction of scrambled ions in falsely and correctly interpreted spectra and analyzing the correlation between scrambled ions and SEQUEST scores XCorr and Sp showed scrambled ions could at some extent help improve the discrimination in singly charged identifications, whereas no improvement was found for multiply charged results.
Collapse
Affiliation(s)
- Nai-ping Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | | | | |
Collapse
|
13
|
Harrison AG. Fragmentation reactions of b(5) and a (5) ions containing proline--the structures of a(5) ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:594-601. [PMID: 21952775 DOI: 10.1007/s13361-011-0232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/01/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
A detailed study has been made of the b(5) and a(5) ions derived from the amides H-Ala-Ala-Ala-Ala-Pro-NH(2), H-Ala-Ala-Ala-Pro-Ala-NH(2), and H-Ala-Ala-Pro-Ala-Ala-NH(2). From quasi-MS(3) experiments it is shown that the product ion mass spectra of the three b(5) ions are essentially identical, indicating macrocyclization/reopening to produce a common mixture of intermediates prior to fragmentation. This is in agreement with numerous recent studies of sequence scrambling in b ions. By contrast, the product ion mass spectra for the a(5) ions show substantial differences, indicating significant differences in the mixture of structures undergoing fragmentation for these three species. The results are interpreted in terms of a mixture of classical substituted iminium ions as well as protonated C-terminal amides formed by cyclization/rearrangement as reported recently for a(4) ions (Bythell, Maître , Paizs, J . Am. Chem. Soc. 2010, 132, 14761-14779). Novel fragment ions observed upon fragmentation of the a(5) ions are protonated H-Pro-NH(2) and H-Pro-Ala-NH(2) which arise by fragmentation of the amides. The observation of these products provides strong experimental evidence for the cyclization/rearrangement reaction to form amides and shows that it also applies to a(5) ions.
Collapse
Affiliation(s)
- Alex G Harrison
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
14
|
Kilpatrick LE, Neta P, Yang X, Simón-Manso Y, Liang Y, Stein SE. Formation of y + 10 and y + 11 ions in the collision-induced dissociation of peptide ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:655-663. [PMID: 22161574 DOI: 10.1007/s13361-011-0277-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
Tandem mass spectra of peptide ions, acquired in shotgun proteomic studies of selected proteins, tissues, and organisms, commonly include prominent peaks that cannot be assigned to the known fragmentation product ions (y, b, a, neutral losses). In many cases these persist even when creating consensus spectra for inclusion in spectral libraries, where it is important to determine whether these peaks represent new fragmentation paths or arise from impurities. Using spectra from libraries and synthesized peptides, we investigate a class of fragment ions corresponding to y(n-1) + 10 and y(n-1) + 11, where n is the number of amino acid residues in the peptide. These 10 and 11 Da differences in mass of the y ion were ascribed before to the masses of [+ CO - H(2)O] and [+ CO - NH(3)], respectively. The mechanism is suggested to involve dissociation of the N-terminal residue at the CH-CO bond following loss of H(2)O or NH(3). MS(3) spectra of these ions show that the location of the additional 10 or 11 Da is at the N-terminal residue. The y(n-1) + 10 ion is most often found in peptides with N-terminal proline, asparagine, and histidine, and also with serine and threonine in the adjacent position. The y(n-1) + 11 ion is observed predominantly with histidine and asparagine at the N-terminus, but also occurs with asparagine in positions two through four. The intensities of the y(n-1) + 10 ions decrease with increasing peptide length. These data for y(n-1) + 10 and y(n-1) + 11 ion formation may be used to improve peptide identification from tandem mass spectra.
Collapse
Affiliation(s)
- Lisa E Kilpatrick
- Chemical and Biochemical Reference Data Division, National Institute of Standards and Technology, 100 Bureau Drive, MS8320, Gaithersburg, MD 20899, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Dupré M, Cantel S, Martinez J, Enjalbal C. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:330-346. [PMID: 22095165 DOI: 10.1007/s13361-011-0254-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (b(n-1) + H(2)O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H(2)O and NH(3)) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a y(m-1) ion, i.e., to the loss of the N-terminal residue following the a(1)-y(m-1) fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.
Collapse
Affiliation(s)
- Mathieu Dupré
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Bâtiment Chimie (17), Université Montpellier 2, Universités Montpellier 1 et 2 - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|