1
|
Xu W, Xu N, Zhang M, Wang Y, Ling G, Yuan Y, Zhang P. Nanotraps based on multifunctional materials for trapping and enrichment. Acta Biomater 2022; 138:57-72. [PMID: 34492372 DOI: 10.1016/j.actbio.2021.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Many biomarkers for early diagnosis of cancer and other diseases are difficult to detect because they often exist in body fluids in very low concentrations and are masked by high-abundance proteins such as albumin and immunoglobulins. At the same time, water pollution is one of the most serious environmental problems, but the existing adsorption materials have many shortcomings such as slow kinetics, small adsorption capacity and low adsorption efficiency. Nanotraps, mixed with gases or liquids, can capture and concentrate target substances, such as biomolecules, metal ions and oxoanions. Using nanotraps is a versatile sample pre-processing approach and it can improve the sensitivity of downstream analysis techniques. Herein, the preparations and applications of different types of nanotraps are mainly introduced. What's more, the shortcomings of using nanotraps in practical applications are also discussed. Using nanotraps is a promising sample pre-processing technology, which is of great significance for biomarkers discovery, diseases diagnosis, sewage purification and valuable ions recovery. STATEMENT OF SIGNIFICANCE: This review collates and summarizes the preparations and applications of different types of nanotraps, and discusses the shortcomings of using nanotraps in practical applications. Nanotraps, mixed with gases or liquids, can capture and concentrate target materials, such as biomolecules, metal ions and oxoanions. Using nanotraps is a versatile sample pre-processing approach and it can improve the sensitivity of downstream analysis techniques. During the COVID-19 pandemic, hydrogel nanotraps were successfully utilized for RT-PCR analysis with the FDA Emergency Used Authorization for COVID-19. Using nanotraps is a promising sample pre-processing technology, which is of great significance for biomarkers discovery, diseases diagnosis, sewage purification and valuable ions recovery.
Collapse
Affiliation(s)
- Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Yue Yuan
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
2
|
Coni P, Piras M, Mateddu A, Piludu M, Orru G, Scano A, Cabras T, Piras V, Lachowicz JI, Jaremko M, Faa G, Castagnola M, Pichiri G. Thymosin β4 cytoplasmic/nuclear translocation as a new marker of cellular stress. A Caco2 case study. RSC Adv 2020; 10:12680-12688. [PMID: 35497634 PMCID: PMC9051466 DOI: 10.1039/c9ra10365a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
Biomarkers of cell stress are important for proper diagnosis, and in studies of how cells respond to drug treatment. Biomarkers that respond early to pharmacological treatment could improve therapy by tailoring the treatment to the needs of the patient. Thymosin beta-4 (Tβ4) plays a significant role in many aspects of cellular metabolism because of its actin-sequestering properties. Other physiological functions of Tβ4 have been also reported. Among these, Tβ4 may play a crucial role during cellular stress. We addressed the relevance of Tβ4 in cellular stress conditions by using different treatments (serum starvation, DMSO, and butyrate administration) in a colon adenocarcinoma cell line (CaCo2), a cell line frequently used for in vitro experimental studies of Tβ4. In this study, different stress stimuli were analyzed and the obtained results were compared using immunocytochemistry, and molecular and biochemical methods. Taken together, the data clearly indicate that the Tβ4 peptide is involved in adaptive and defensive cellular mechanisms, and that different stress inducers lead to a similar Tβ4 cytoplasmic/nuclear translocation. The translocation of Tβ4 between the cytoplasm and the nucleus of the cell seems characteristic of a possible molecular response to cellular stress exerted by this peptide. Biomarkers of cell stress are important for proper diagnosis, and in studies of how cells respond to drug treatment.![]()
Collapse
|
3
|
Li J, Huang K, Hu G, Babarinde IA, Li Y, Dong X, Chen YS, Shang L, Guo W, Wang J, Chen Z, Hutchins AP, Yang YG, Yao H. An alternative CTCF isoform antagonizes canonical CTCF occupancy and changes chromatin architecture to promote apoptosis. Nat Commun 2019; 10:1535. [PMID: 30948729 PMCID: PMC6449404 DOI: 10.1038/s41467-019-08949-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
CTCF plays key roles in gene regulation, chromatin insulation, imprinting, X chromosome inactivation and organizing the higher-order chromatin architecture of mammalian genomes. Previous studies have mainly focused on the roles of the canonical CTCF isoform. Here, we explore the functions of an alternatively spliced human CTCF isoform in which exons 3 and 4 are skipped, producing a shorter isoform (CTCF-s). Functionally, we find that CTCF-s competes with the genome binding of canonical CTCF and binds a similar DNA sequence. CTCF-s binding disrupts CTCF/cohesin binding, alters CTCF-mediated chromatin looping and promotes the activation of IFI6 that leads to apoptosis. This effect is caused by an abnormal long-range interaction at the IFI6 enhancer and promoter. Taken together, this study reveals a non-canonical function for CTCF-s that antagonizes the genomic binding of canonical CTCF and cohesin, and that modulates chromatin looping and causes apoptosis by stimulating IFI6 expression. CTCF plays key roles in gene regulation, chromatin insulation and organizing the higher-order chromatin architecture of mammalian genomes. Here the authors investigate the function an alternatively spliced shorter CTCF isoform, finding that this isoform antagonizes canonical CTCF occupancy and changes chromatin architecture to promote apoptosis.
Collapse
Affiliation(s)
- Jiao Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaimeng Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Isaac A Babarinde
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yaoyi Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaotao Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Sheng Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Liping Shang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China
| | - Zhaoming Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yun-Gui Yang
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Irfan M, Afsar NU, Wang Y, Xu T. Investigation of key process parameters in acid recovery for diffusion dialysis using novel (MDMH-QPPO) anion exchange membranes. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
DJ-1 protects against undernutrition-induced atrophy through inhibition of the MAPK-ubiquitin ligase pathway in myoblasts. Life Sci 2015; 143:50-7. [PMID: 26408915 DOI: 10.1016/j.lfs.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/01/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023]
Abstract
AIMS The purpose of this study is to explore whether antioxidant DJ-1 protein affects the atrophy of skeletal muscle cell induced by undernutrition. MAIN METHODS To determine cell atrophic responses, L6 cell line and skeletal primary cells from mouse hind limbs were cultivated under condition of FBS-free and low glucose. Changes of protein expression were analyzed using Western blot. Overexpression and knockdown of DJ-1 was performed in cells to assess its influence on cell atrophic responses. KEY FINDINGS Undernutrition decreased cell size and increased the abundance of oxidized form and total form of DJ-1 protein in L6 myoblasts. The undernourished cells revealed an elevation in the expression of muscle-specific RING finger-1 (MuRF-1) and atrogin-1, and in the phosphorylations of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase compared with control groups. Moreover, DJ-1-knockout mice showed a decrease in cell size and an enhancement in the expression of MuRF-1 and atrogin-1, as well as in the phosphorylation of MAPKs in gastrocnemius muscles; these changes were also observed in L6 cells transfected with siRNA of DJ-1. On the other hand, L6 cells overexpressing full-length DJ-1 did not exhibit the alterations in cell size and ubiquitin ligases seen after undernourished states of control cells. Myotubes differentiated from L6 cells also showed elevated expression of MuRF-1 and atrogin-1 in response to undernutrition. SIGNIFICANCE These results suggest that DJ-1 protein may contribute to undernutrition-induced atrophy via MAPKs/ubiquitin ligase pathway in skeletal muscle cells.
Collapse
|
6
|
Ghosh S, Geahlen RL. Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease. EBioMedicine 2015; 2:1785-98. [PMID: 26870803 PMCID: PMC4740304 DOI: 10.1016/j.ebiom.2015.09.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Microglial cells in the brains of Alzheimer's patients are known to be recruited to amyloid-beta (Aβ) plaques where they exhibit an activated phenotype, but are defective for plaque removal by phagocytosis. In this study, we show that microglia stressed by exposure to sodium arsenite or Aβ(1–42) peptides or fibrils form extensive stress granules (SGs) to which the tyrosine kinase, SYK, is recruited. SYK enhances the formation of SGs, is active within the resulting SGs and stimulates the production of reactive oxygen and nitrogen species that are toxic to neuronal cells. This sequestration of SYK inhibits the ability of microglial cells to phagocytose Escherichia coli or Aβ fibrils. We find that aged microglial cells are more susceptible to the formation of SGs; and SGs containing SYK and phosphotyrosine are prevalent in the brains of patients with severe Alzheimer's disease. Phagocytic activity can be restored to stressed microglial cells by treatment with IgG, suggesting a mechanism to explain the therapeutic efficacy of intravenous IgG. These studies describe a mechanism by which stress, including exposure to Aβ, compromises the function of microglial cells in Alzheimer's disease and suggest approaches to restore activity to dysfunctional microglial cells. Chronic stress promotes the formation of large, persistent stress granules in microglial cells. SYK is recruited to stress granules, which promotes inflammatory responses and inhibits phagocytosis. Phagocytic activity of stressed cells can be recovered by treatment with IgG.
Microglial cells in the brains of patients with Alzheimer's disease are activated, but are defective at phagocytosis of amyloid plaques. Activation and phagocytosis require the SYK tyrosine kinase. Chronic exposure to amyloid-beta promotes the formation of persistent stress granules to which active SYK binds and these are found in the brains of patients with severe Alzheimer's disease. This activation and sequestration of SYK promotes inflammation and inhibits phagocytosis. Phagocytic activity can be recovered by treatment with IgG, which causes a redistribution of SYK within the cell, suggesting potential therapeutic approaches to restoring microglial cell function to diseased or aged brains.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Krisenko MO, Higgins RL, Ghosh S, Zhou Q, Trybula JS, Wang WH, Geahlen RL. Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem 2015; 290:27803-15. [PMID: 26429917 DOI: 10.1074/jbc.m115.642900] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 12/16/2022] Open
Abstract
Syk is a cytoplasmic kinase that serves multiple functions within the immune system to couple receptors for antigens and antigen-antibody complexes to adaptive and innate immune responses. Recent studies have identified additional roles for the kinase in cancer cells, where its expression can either promote or suppress tumor cell growth, depending on the context. Proteomic analyses of Syk-binding proteins identified several interacting partners also found to be recruited to stress granules. We show here that the treatment of cells with inducers of stress granule formation leads to the recruitment of Syk to these protein-RNA complexes. This recruitment requires the phosphorylation of Syk on tyrosine and results in the phosphorylation of proteins at or near the stress granule. Grb7 is identified as a Syk-binding protein involved in the recruitment of Syk to the stress granule. This recruitment promotes the formation of autophagosomes and the clearance of stress granules from the cell once the stress is relieved, enhancing the ability of cells to survive the stress stimulus.
Collapse
Affiliation(s)
- Mariya O Krisenko
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Reneé L Higgins
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Soumitra Ghosh
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Qing Zhou
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Joy S Trybula
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Wen-Horng Wang
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Robert L Geahlen
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
8
|
SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells. Oncogene 2014; 34:4491-9. [PMID: 25531330 DOI: 10.1038/onc.2014.380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV)-encoded Latent Membrane Protein 2A (LMP2A) is an EBV latency-associated protein regularly expressed in nasopharyngeal carcinoma (NPC). In B cells, LMP2A activity resembles that of a constitutively activated antigen receptor, which recruits the Syk tyrosine kinase to activate a set of downstream signaling pathways. LMP2A also downregulates cellular Syk levels. In the present study, we demonstrate that Syk interacts with the integrin β4 subunit (ITGβ4) of integrin α6β4 in epithelial cells and that concurrent LMP2A expression interferes with this interaction by competitive binding to Syk. We find that both Syk and LMP2A have an effect on ITGβ4 cell surface expression. However, in LMP2A expressing cells, ITGβ4 remains concentrated at the cellular protrusions, an expression pattern characteristic of motile cells, including NPC-derived epithelial cells. This effect of LMP2A on ITGβ4 localization is associated with a greater propensity for migration and invasion in-vitro, and may contribute to the invasive property of LMP2A-expressing NPC.
Collapse
|
9
|
Wang WH, Childress MO, Geahlen RL. Syk interacts with and phosphorylates nucleolin to stabilize Bcl-x(L) mRNA and promote cell survival. Mol Cell Biol 2014; 34:3788-99. [PMID: 25092868 PMCID: PMC4187708 DOI: 10.1128/mcb.00937-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 01/07/2023] Open
Abstract
The Syk protein tyrosine kinase, a well-characterized regulator of immune cell function, plays an increasingly recognized role in tumorigenesis as a promoter of cell survival in both hematological and nonhematological malignancies. We show here that the expression of Syk in MCF7 or MDA-MB-231 breast cancer cells or in DG75 B-lymphoma cells protects cells from apoptosis induced by oxidative or genotoxic stress by stabilizing the mRNA for Bcl-x(L), an antiapoptotic protein. Syk binds robustly to nucleolin and phosphorylates it on tyrosine, enhancing its ability to bind the Bcl-x(L) mRNA. Consequently, reducing the level of nucleolin by RNA interference attenuates the ability of Syk to protect cells from stress-induced cell death.
Collapse
Affiliation(s)
- Wen-Horng Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Michael O Childress
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Zhai G, Wu X, Luo Q, Wu K, Zhao Y, Liu J, Xiong S, Feng YQ, Yang L, Wang F. Evaluation of serum phosphopeptides as potential cancer biomarkers by mass spectrometric absolute quantification. Talanta 2014; 125:411-7. [DOI: 10.1016/j.talanta.2014.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
|
11
|
Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:270302. [PMID: 25045209 PMCID: PMC4090447 DOI: 10.1155/2014/270302] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/27/2014] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.
Collapse
|
12
|
DJ-1 protein regulates CD3+ T cell migration via overexpression of CXCR4 receptor. Atherosclerosis 2014; 235:503-9. [PMID: 24953490 DOI: 10.1016/j.atherosclerosis.2014.05.955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 04/30/2014] [Accepted: 05/27/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE DJ-1-a multifunctional protein responding to oxidative stress-is a possible regulator of the inflammatory response that plays an important role in atherosclerosis. Stromal cell-derived factor (SDF)-1 and its receptor, chemokine receptor type 4 (CXCR4), have been implicated in the recruitment of inflammatory cells during atherosclerosis. Here we investigated the hypothesis that DJ-1 protein might participate in CD3+ T cell functions in response to SDF-1 and contribute to the pathogenesis of atherosclerosis. METHODS AND RESULTS SDF-1 stimulated migration in mouse CD3+ T cells in a dose-dependent manner. SDF-1 also elevated the phosphorylation level of extracellular-regulated kinase (ERK) 1/2 in CD3+ T cells. These SDF-1-induced responses were greater in CD3+ T cells from DJ-1 gene knockout (DJ-1(-/-)) mice than in those from wild type (DJ-1(+/+)) mice and were abolished by treatment with WZ811 and PD98059, inhibitors of CXCR4 and ERK1/2, respectively. Flow cytometry revealed that expression of the CXCR4 receptor was greater in CD3+ T cells from DJ-1(-/-) mice than in those from the controls. Moreover, expression of the CD3 protein was observed in the neointimal plaque from carotid artery-ligated mice and was stronger in DJ-1(-/-) mice compared with controls. The CD3+ T cell subsets, Th1 and Th17, showed increased production of interferon-γ and interleukin-17 in DJ-1(-/-) compared with DJ-1(+/+) mice. CONCLUSION DJ-1 protein is involved in the SDF-1-induced CD3+ T cell migration via overexpression of the CXCR4 receptor, and that DJ-1 acts as an inhibitory regulator in vascular remodeling such as neointima formation.
Collapse
|
13
|
Strein C, Alleaume AM, Rothbauer U, Hentze MW, Castello A. A versatile assay for RNA-binding proteins in living cells. RNA (NEW YORK, N.Y.) 2014; 20:721-731. [PMID: 24664470 PMCID: PMC3988573 DOI: 10.1261/rna.043562.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein-mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology.
Collapse
Affiliation(s)
- Claudia Strein
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | - Ulrich Rothbauer
- Natural and Medical Science Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | | | - Alfredo Castello
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
14
|
Han Y, Garcia BA. Combining genomic and proteomic approaches for epigenetics research. Epigenomics 2013; 5:439-52. [PMID: 23895656 DOI: 10.2217/epi.13.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA-protein and protein-protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level.
Collapse
Affiliation(s)
- Yumiao Han
- Epigenetics Program, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
15
|
Pichiri G, Coni P, Nemolato S, Cabras T, Fanari MU, Sanna A, Di Felice E, Messana I, Castagnola M, Faa G. Cellular trafficking of thymosin beta-4 in HEPG2 cells following serum starvation. PLoS One 2013; 8:e67999. [PMID: 23967050 PMCID: PMC3743897 DOI: 10.1371/journal.pone.0067999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/26/2013] [Indexed: 12/16/2022] Open
Abstract
Thymosin beta-4 (Tβ4) is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies. In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h. At 84 h, a diffuse Tβ4 cytoplasmic immunostaining shifted to a focal perinuclear and nuclear reactivity. In the absence of serum, nuclear reactivity was localized in small granules, evenly dispersed throughout the entire nuclear envelop, and was observed as earlier as at 48 h. Cytoplasmic immunostaining for Tβ4 in HepG2 cells under starvation appeared significantly lower at 48 h and decreased progressively at 72 and at 84 h. At these time points, the decrease in cytoplasmic staining was associated with a progressive increase in nuclear reactivity, suggesting a possible translocation of the peptide from the cytoplasm to the nuclear membrane. The normal immunocytochemical pattern was restored when culture cells submitted to starvation for 84 h received a new complete medium for 48 h. Mass spectrometry analysis, performed on the nuclear and cytosolic fractions of HepG2 growing with and without serum, showed that Tβ4 was detectable only in the cytosolic and not in the intranuclear fraction. These data suggest that Tβ4 is able to translocate from different cytoplasmic domains to the nuclear membrane and back, based on different stress conditions within the cell. The punctuate pattern of nuclear Tβ4 immunostaining associated with Tβ4 absence in the nucleoplasm suggest that this peptide might be localized in the nuclear pores, where it could regulate the pore permeability.
Collapse
Affiliation(s)
- Giuseppina Pichiri
- Divisione di Anatomia Patologica, Dipartimento di Citomorfologia, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hu L, Yang L, Lipchik AM, Geahlen RL, Parker LL, Tao WA. A quantitative proteomics-based competition binding assay to characterize pITAM-protein interactions. Anal Chem 2013; 85:5071-7. [PMID: 23611696 PMCID: PMC3715304 DOI: 10.1021/ac400359t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Characterization of ligand-protein binding is of crucial importance in drug discovery. Classical competition binding assays measure the binding of a labeled ligand in the presence of various concentrations of unlabeled ligand and typically use single purified proteins. Here, we introduce a high-throughput approach to study ligand-protein interactions by coupling competition binding assays with mass spectrometry-based quantitative proteomics. With the use of a phosphorylated immunoreceptor tyrosine-based activation motif (pITAM) peptide as a model, we characterized pITAM-interacting partners in human lymphocytes. The shapes of competition binding curves of various interacting partners constructed in a single set of quantitative proteomics experiments reflect relative affinities for the pITAM peptide. This strategy can provide an efficient approach to distinguish specific interacting partners, including two signaling kinases possessing tandem SH2 domains, SYK and ZAP-70, as well as other SH2 domain-containing proteins such as CSK and PI3K, from contaminants and to measure relative binding affinities of multiple proteins in a single experiment.
Collapse
Affiliation(s)
- Lianghai Hu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Li Yang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
| | - Andrew M. Lipchik
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
| | - Laurie L. Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
17
|
Won KJ, Jung SH, Lee CK, Na HR, Lee KP, Lee DY, Park ES, Choi WS, Shim SB, Kim B. DJ-1/park7 protects against neointimal formation via the inhibition of vascular smooth muscle cell growth. Cardiovasc Res 2012; 97:553-61. [PMID: 23230227 DOI: 10.1093/cvr/cvs363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS DJ-1/park7 is a ubiquitously expressed multifunctional protein that plays essential roles in a variety of cells. However, its function in the vascular system has not been determined. We investigated the protective roles of DJ-1/park7 in vascular disorders, especially in neointimal hyperplasia. METHODS AND RESULTS DJ-1/park7 was strongly expressed in the neointimal layer, in which its oxidized form was predominant. Treatment of vascular smooth muscle cells (VSMCs) from the mouse aorta with H(2)O(2) increased the oxidation of DJ-1/park7 visualized on two-dimensional electrophoresis gels. The growth of VSMCs in FBS-containing media and the release of H(2)O(2) were significantly increased in DJ-1/park7(-/-) knockout mice compared with DJ-1/park7(+/+) wild-type mice. The expression of cyclin D1 and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 were greater in VSMCs from the DJ-1/park7(-/-) aorta than from the DJ-1/park7(+/+) aorta. Both of these measures were inhibited by treatment with an ERK1/2 inhibitor or antioxidants and in DJ-1/park7-overexpressing cells. VSMC proliferation, cyclin D1 expression, and ERK1/2 phosphorylation in response to platelet-derived growth factor-BB were upregulated in DJ-1/park7(-/-) compared with DJ-1/park7(+/+) mice. VSMCs of DJ-1/park7(-/-) mice exhibited higher levels of sprout outgrowth of aortic strips and neointimal plaque formation elicited by carotid artery ligation compared with those of DJ-1/park7(+/+) mice. CONCLUSION These results indicate that DJ-1/park7 is involved in the growth of VSMCs, thereby inhibiting neointimal hyperplasia, and suggest that it might play protective roles in vascular remodelling.
Collapse
Affiliation(s)
- Kyung Jong Won
- Department of Medicine, Institute of Functional Genomics, School of Medicine, Konkuk University, 322 Danwol-dong, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dunham WH, Mullin M, Gingras AC. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 2012; 12:1576-90. [PMID: 22611051 DOI: 10.1002/pmic.201100523] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Identifying the interactions established by a protein of interest can be a critical step in understanding its function. This is especially true when an unknown protein of interest is demonstrated to physically interact with proteins of known function. While many techniques have been developed to characterize protein-protein interactions, one strategy that has gained considerable momentum over the past decade for identification and quantification of protein-protein interactions, is affinity-purification followed by mass spectrometry (AP-MS). Here, we briefly review the basic principles used in affinity-purification coupled to mass spectrometry, with an emphasis on tools (both biochemical and computational), which enable the discovery and reporting of high quality protein-protein interactions.
Collapse
Affiliation(s)
- Wade H Dunham
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|