1
|
Youssef MM, Szot CW, Folz J, Collier LM, Kweon HK, DeFiglia SA, Ayad MF, Hussein LA, Abdel-Ghany MF, Hakansson K. Electron Capture vs Transfer Dissociation for Site Determination of Tryptic Peptide Tyrosine Sulfation: Direct Detection of Fibrinogen Sulfation Sites and Identification of Novel Isobaric Interferences. J Proteome Res 2024; 23:2386-2396. [PMID: 38900499 PMCID: PMC11231624 DOI: 10.1021/acs.jproteome.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tyrosine sulfation, an understudied but crucial post-translational modification, cannot be directly detected in conventional nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) due to the extreme sulfate lability. Here, we report the detection of sulfate-retaining fragments from LC-electron capture dissociation (ECD) and nanoLC-electron transfer higher energy collision dissociation (EThcD). Sulfopeptide candidates were identified by Proteome Discoverer and MSFragger analysis of nanoLC-HCD MS/MS data and added to inclusion lists for LC-ECD or nanoLC-EThcD MS/MS. When this approach failed, targeted LC-ECD with fixed m/z isolation windows was performed. For the plasma protein fibrinogen, the known pyroglutamylated sulfopeptide QFPTDYDEGQDDRPK from the beta chain N-terminus was identified despite a complete lack of sulfate-containing fragment ions. The peptide QVGVEHHVEIEYD from the gamma-B chain C-terminus was also identified as sulfated or phosphorylated. This sulfopeptide is not annotated in Uniprot but was previously reported. MSFragger further identified a cysteine-containing peptide from the middle of the gamma chain as sulfated and deamidated. NanoLC-EThcD and LC-ECD MS/MS confirmed the two former sulfopeptides via sulfate-retaining fragment ions, whereas an unexpected fragmentation pattern was observed for the third sulfopeptide candidate. Manual interpretation of the LC-ECD spectrum revealed two additional isobaric identifications: a trisulfide-linked cysteinyl-glycine or a carbamidomethyl-dithiothreiotol covalent adduct. Synthesis of such adducts confirmed the latter identity.
Collapse
Affiliation(s)
- Menatallah M Youssef
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Carson W Szot
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jeff Folz
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Luke M Collier
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Hye Kyong Kweon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Steven A DeFiglia
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Miriam F Ayad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Lobna A Hussein
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Maha F Abdel-Ghany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Kristina Hakansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Li J, Zhan X. Mass spectrometry analysis of phosphotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2024; 43:857-887. [PMID: 36789499 DOI: 10.1002/mas.21836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Tyrosine phosphorylation is a crucial posttranslational modification that is involved in various aspects of cell biology and often has functions in cancers. It is necessary not only to identify the specific phosphorylation sites but also to quantify their phosphorylation levels under specific pathophysiological conditions. Because of its high sensitivity and accuracy, mass spectrometry (MS) has been widely used to identify endogenous and synthetic phosphotyrosine proteins/peptides across a range of biological systems. However, phosphotyrosine-containing proteins occur in extremely low abundance and they degrade easily, severely challenging the application of MS. This review highlights the advances in both quantitative analysis procedures and enrichment approaches to tyrosine phosphorylation before MS analysis and reviews the differences among phosphorylation, sulfation, and nitration of tyrosine residues in proteins. In-depth insights into tyrosine phosphorylation in a wide variety of biological systems will offer a deep understanding of how signal transduction regulates cellular physiology and the development of tyrosine phosphorylation-related drugs as cancer therapeutics.
Collapse
Affiliation(s)
- Jiajia Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
| |
Collapse
|
3
|
Girod M, Arquier D, Helms A, Juetten K, Brodbelt JS, Lemoine J, MacAleese L. Characterization of Phosphorylated Peptides by Electron-Activated and Ultraviolet Dissociation Mass Spectrometry: A Comparative Study with Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1040-1054. [PMID: 38626331 PMCID: PMC11382297 DOI: 10.1021/jasms.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Mass-spectrometry-based methods have made significant progress in the characterization of post-translational modifications (PTMs) in peptides and proteins; however, room remains to improve fragmentation methods. Ideal MS/MS methods are expected to simultaneously provide extensive sequence information and localization of PTM sites and retain labile PTM groups. This collection of criteria is difficult to meet, and the various activation methods available today offer different capabilities. In order to examine the specific case of phosphorylation on peptides, we investigate electron transfer dissociation (ETD), electron-activated dissociation (EAD), and 193 nm ultraviolet photodissociation (UVPD) and compare all three methods with classical collision-induced dissociation (CID). EAD and UVPD show extensive backbone fragmentation, comparable in scope to that of CID. These methods provide diverse backbone fragmentation, producing a/x, b/y, and c/z ions with substantial sequence coverages. EAD displays a high retention efficiency of the phosphate modification, attributed to its electron-mediated fragmentation mechanisms, as observed in ETD. UVPD offers reasonable retention efficiency, also allowing localization of the PTM site. EAD experiments were also performed in an LC-MS/MS workflow by analyzing phosphopeptides spiked in human plasma, and spectra allow accurate identification of the modified sites and discrimination of isomers. Based on the overall performance, EAD and 193 nm UVPD offer alternative options to CID and ETD for phosphoproteomics.
Collapse
Affiliation(s)
- Marion Girod
- Universite Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Delphine Arquier
- Universite Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Amanda Helms
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jérôme Lemoine
- Universite Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Luke MacAleese
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69100 Villeurbanne, France
| |
Collapse
|
4
|
Bashyal A, Brodbelt JS. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. MASS SPECTROMETRY REVIEWS 2024; 43:289-326. [PMID: 36165040 PMCID: PMC10040477 DOI: 10.1002/mas.21811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications (PTMs) are covalent modifications of proteins that modulate the structure and functions of proteins and regulate biological processes. The development of various mass spectrometry-based proteomics workflows has facilitated the identification of hundreds of PTMs and aided the understanding of biological significance in a high throughput manner. Improvements in sample preparation and PTM enrichment techniques, instrumentation for liquid chromatography-tandem mass spectrometry (LC-MS/MS), and advanced data analysis tools enhance the specificity and sensitivity of PTM identification. Highly prevalent PTMs like phosphorylation, glycosylation, acetylation, ubiquitinylation, and methylation are extensively studied. However, the functions and impact of less abundant PTMs are not as well understood and underscore the need for analytical methods that aim to characterize these PTMs. This review focuses on the advancement and analytical challenges associated with the characterization of three less common but biologically relevant PTMs, specifically, adenosine diphosphate-ribosylation, tyrosine sulfation, and tyrosine nitration. The advantages and disadvantages of various enrichment, separation, and MS/MS techniques utilized to identify and localize these PTMs are described.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Papanastasiou D, Kounadis D, Lekkas A, Orfanopoulos I, Mpozatzidis A, Smyrnakis A, Panagiotopoulos E, Kosmopoulou M, Reinhardt-Szyba M, Fort K, Makarov A, Zubarev RA. The Omnitrap Platform: A Versatile Segmented Linear Ion Trap for Multidimensional Multiple-Stage Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1990-2007. [PMID: 36113052 PMCID: PMC9850925 DOI: 10.1021/jasms.2c00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Multidimensional multiple-stage tandem processing of ions is demonstrated successfully in a novel segmented linear ion trap. The enhanced performance is enabled by incorporating the entire range of ion activation methods into a single platform in a highly dynamic fashion. The ion activation network comprises external injection of reagent ions, radical neutral species, photons, electrons, and collisions with neutrals. Axial segmentation of the two-dimensional trapping field provides access to a unique functionality landscape through a system of purpose-designed regions for processing ions with maximum flexibility. Design aspects of the segmented linear ion trap, termed the Omnitrap platform, are highlighted, and motion of ions trapped by rectangular waveforms is investigated experimentally by mapping the stability diagram, tracing secular frequencies, and exploring different isolation techniques. All fragmentation methods incorporated in the Omnitrap platform involving radical chemistry are shown to provide complete sequence coverage for partially unfolded ubiquitin. Three-stage (MS3) tandem mass spectrometry experiments combining collision-induced dissociation of radical ions produced by electron meta-ionization and further involving two intermediate steps of ion isolation and accumulation are performed with high efficiency, producing information rich spectra with signal-to-noise levels comparable to those obtained in a two-stage (MS2) experiment. The advanced capabilities of the Omnitrap platform to provide in-depth top-down MSn characterization of proteins are portrayed. Performance is further enhanced by connecting the Omnitrap platform to an Orbitrap mass analyzer, while successful integration with time-of-flight analyzers has already been demonstrated.
Collapse
Affiliation(s)
- Dimitris Papanastasiou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Diamantis Kounadis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Alexandros Lekkas
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Ioannis Orfanopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Andreas Mpozatzidis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Athanasios Smyrnakis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Elias Panagiotopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Mariangela Kosmopoulou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | | | - Kyle Fort
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Alexander Makarov
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Roman A. Zubarev
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
| |
Collapse
|
6
|
Pepi LE, Sasiene ZJ, Mendis PM, Jackson GP, Amster IJ. Structural Characterization of Sulfated Glycosaminoglycans Using Charge-Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2143-2153. [PMID: 32820910 PMCID: PMC8045215 DOI: 10.1021/jasms.0c00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glycosaminoglycans (GAGs) participate in a broad range of physiological processes, and their structures are of interest to researchers in structural biology and medicine. Although they are abundant in tissues and extracellular matrices, their structural heterogeneity makes them challenging analytes. Mass spectrometry, and more specifically, tandem mass spectrometry, is particularly well suited for their analysis. Many tandem mass spectrometry techniques have been examined for their suitability toward the structural characterization of GAGs. Threshold activation methods such as collision-induced dissociation (CID) produce mainly glycosidic cleavages and do not yield a broad range of structurally informative cross-ring fragments. Considerable research efforts have been directed at finding other means of dissociating gas-phase GAG ions to produce more comprehensive structural information. Here, we compare the structural information on GAGs obtained by charge-transfer dissociation (CTD) and electron detachment dissociation (EDD). EDD has previously been applied to GAGs and is known to produce both glycosidic and cross-ring cleavages in similar abundance. CTD has not previously been used to analyze GAGs but has been shown to produce abundant cross-ring cleavages and no sulfate loss when applied to another class of sulfated carbohydrates like algal polysaccharides. In contrast to EDD, which is restricted to FTICR mass spectrometers, CTD can be implemented on other platforms, such as ion trap mass spectrometers (ITMS). Here, we show the capability of CTD-ITMS to produce structurally significant details of the sites of modification in both heparan sulfate (HS) and chondroitin sulfate (CS) standards ranging in length from degree of polymerization (dp) 4 to dp6. EDD and CTD both yield more structural information than CID and yield similar fractional abundances to one another for glycosidic fragments, cross-ring fragments, and neutral losses.
Collapse
Affiliation(s)
- Lauren E Pepi
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Zachary J Sasiene
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Praneeth M Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia 26506, United States
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Lermyte F, Tsybin YO, O'Connor PB, Loo JA. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1149-1157. [PMID: 31073892 PMCID: PMC6591204 DOI: 10.1007/s13361-019-02201-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
In recent years, there has been increasing interest in top-down mass spectrometry (TDMS) approaches for protein analysis, driven both by technological advancements and efforts such as those by the multinational Consortium for Top-Down Proteomics (CTDP). Today, diverse sample preparation and ionization methods are employed to facilitate TDMS analysis of denatured and native proteins and their complexes. The goals of these studies vary, ranging from protein and proteoform identification, to determination of the binding site of a (non)covalently-bound ligand, and in some cases even with the aim to study the higher order structure of proteins and complexes. Currently, however, no widely accepted terminology exists to precisely and unambiguously distinguish between the different types of TDMS experiments that can be performed. Instead, ad hoc developed terminology is often used, which potentially complicates communication of top-down and allied methods and their results. In this communication, we consider the different types of top-down (or top-down-related) MS experiments that have been performed and reported, and define distinct categories based on the protocol used and type(s) of information that can be obtained. We also consider the different possible conventions for distinguishing between middle- and top-down MS, based on both sample preparation and precursor ion mass. We believe that the proposed framework presented here will prove helpful for researchers to communicate about TDMS and will be an important step toward harmonizing and standardizing this growing field. Graphical Abstract.
Collapse
Affiliation(s)
- Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Borotto NB, Ileka KM, Tom CATMB, Martin BR, Håkansson K. Free Radical Initiated Peptide Sequencing for Direct Site Localization of Sulfation and Phosphorylation with Negative Ion Mode Mass Spectrometry. Anal Chem 2018; 90:9682-9686. [PMID: 30063332 DOI: 10.1021/acs.analchem.8b02707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tandem mass spectrometry (MS/MS) is the primary method for discovering, identifying, and localizing post-translational modifications (PTMs) in proteins. However, conventional positive ion mode collision induced dissociation (CID)-based MS/MS often fails to yield site-specific information for labile and acidic modifications due to low ionization efficiency in positive ion mode and/or preferential PTM loss. While a number of alternative methods have been developed to address this issue, most require specialized instrumentation or indirect detection. In this work, we present an amine-reactive TEMPO-based free radical initiated peptide sequencing (FRIPS) approach for negative ion mode analysis of phosphorylated and sulfated peptides. FRIPS-based fragmentation generates sequence informative ions for both phosphorylated and sulfated peptides with no significant PTM loss. Furthermore, FRIPS is compared to positive ion mode CID, electron transfer dissociation (ETD), as well as negative ion mode electron capture dissociation (niECD) and CID, both in terms of sequence coverage and fragmentation efficiency for phospho- and sulfo-peptides. Because FRIPS-based fragmentation has no particular instrumentation requirements and shows limited PTM loss, we propose this approach as a promising alternative to current techniques for analysis of labile and acidic PTMs.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Kevin M Ileka
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Christina A T M B Tom
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Brent R Martin
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Kristina Håkansson
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
9
|
Li P, Kreft I, Jackson GP. Top-Down Charge Transfer Dissociation (CTD) of Gas-Phase Insulin: Evidence of a One-Step, Two-Electron Oxidation Mechanism. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:284-296. [PMID: 28786096 PMCID: PMC5803485 DOI: 10.1007/s13361-017-1700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 05/03/2023]
Abstract
Top-down analyses of protonated insulin cations of charge states of 4+, 5+, or 6+ were performed by exposing the isolated precursor ions to a beam of helium cations with kinetic energy of more than 6 keV, in a technique termed charge transfer dissociation (CTD). The ~100 ms charge transfer reaction resulted in approximately 20% conversion efficiency to other intact charge exchange products (CTnoD), and a range of low abundance fragment ions. To increase backbone and sulfide cleavages, and to provide better structural information than straightforward MS2 CTD, the CTnoD oxidized products were isolated and subjected to collisional activation at the MS3 level. The MS3 CTD/CID reaction effectively broke the disulfide linkages, separated the two chains, and yielded more structurally informative fragment ions within the inter-chain cyclic region. CTD also provided doubly oxidized intact product ions at the MS2 level, and resonance ejection of the singly oxidized product ion revealed that the doubly oxidized product originates directly from the isolated precursor ion and not from consecutive CTD reactions of a singly oxidized intermediate. MS4 experiments were employed to help identify potential radical cations and diradical cations, but the results were negative or inconclusive. Nonetheless, the two-electron oxidation process is a demonstration of the very large potential energy (>20 eV) available through CTD, and is a notable capability for a 3D ion trap platform. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Pengfei Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Iris Kreft
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, 26506-6121, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, 26506-6121, USA.
| |
Collapse
|
10
|
Halim MA, MacAleese L, Lemoine J, Antoine R, Dugourd P, Girod M. Ultraviolet, Infrared, and High-Low Energy Photodissociation of Post-Translationally Modified Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:270-283. [PMID: 28980177 DOI: 10.1007/s13361-017-1794-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Mass spectrometry-based methods have made significant progress in characterizing post-translational modifications in peptides and proteins; however, certain aspects regarding fragmentation methods must still be improved. A good technique is expected to provide excellent sequence information, locate PTM sites, and retain the labile PTM groups. To address these issues, we investigate 10.6 μm IRMPD, 213 nm UVPD, and combined UV and IR photodissociation, known as HiLoPD (high-low photodissociation), for phospho-, sulfo-, and glyco-peptide cations. IRMPD shows excellent backbone fragmentation and produces equal numbers of N- and C-terminal ions. The results reveal that 213 nm UVPD and HiLoPD methods can provide diverse backbone fragmentation producing a/x, b/y, and c/z ions with excellent sequence coverage, locate PTM sites, and offer reasonable retention efficiency for phospho- and glyco-peptides. Excellent sequence coverage is achieved for sulfo-peptides and the position of the SO3 group can be pinpointed; however, widespread SO3 losses are detected irrespective of the methods used herein. Based on the overall performance achieved, we believe that 213 nm UVPD and HiLoPD can serve as alternative options to collision activation and electron transfer dissociations for phospho- and glyco-proteomics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mohammad A Halim
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France
| | - Luke MacAleese
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France
| | - Jérôme Lemoine
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 69622, Villeurbanne, Cedex, France
| | - Rodolphe Antoine
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France
| | - Philippe Dugourd
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Marion Girod
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 69622, Villeurbanne, Cedex, France
| |
Collapse
|
11
|
Li P, Jackson GP. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1271-1281. [PMID: 28091811 DOI: 10.1007/s13361-016-1574-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/03/2016] [Accepted: 12/04/2016] [Indexed: 05/04/2023]
Abstract
1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C-CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C-CO, C-N, and N-Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Pengfei Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, 26506-6121, USA.
| |
Collapse
|
12
|
Rush MJP, Riley NM, Westphall MS, Syka JEP, Coon JJ. Sulfur Pentafluoride is a Preferred Reagent Cation for Negative Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1324-1332. [PMID: 28349437 PMCID: PMC5483201 DOI: 10.1007/s13361-017-1600-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 05/10/2023]
Abstract
Negative mode proteome analysis offers access to unique portions of the proteome and several acidic post-translational modifications; however, traditional collision-based fragmentation methods fail to reliably provide sequence information for peptide anions. Negative electron transfer dissociation (NETD), on the other hand, can sequence precursor anions in a high-throughput manner. Similar to other ion-ion methods, NETD is most efficient with peptides of higher charge state because of the increased electrostatic interaction between reacting molecules. Here we demonstrate that NETD performance for lower charge state precursors can be improved by altering the reagent cation. Specifically, the recombination energy of the NETD reaction-largely dictated by the ionization energy (IE) of the reagent cation-can affect the extent of fragmentation. We compare the NETD reagent cations of C16H10●+ (IE = 7.9 eV) and SF5●+ (IE = 9.6 eV) on a set of standard peptides, concluding that SF5●+ yields greater sequence ion generation. Subsequent proteome-scale nLC-MS/MS experiments comparing C16H10●+ and SF5●+ further supported this outcome: analyses using SF5●+ yielded 4637 peptide spectral matches (PSMs) and 2900 unique peptides, whereas C16H10●+ produced 3563 PSMs and 2231 peptides. The substantive gain in identification power with SF5●+ was largely driven by improved identification of doubly deprotonated precursors, indicating that increased NETD recombination energy can increase product ion yield for low charge density precursors. This work demonstrates that SF5●+ is a viable, if not favorable, reagent cation for NETD, and provides improved fragmentation over the commonly used fluoranthene reagent. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthew J P Rush
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Michael S Westphall
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA.
- Mordgridge Institute for Research, Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Robinson MR, Brodbelt JS. Integrating Weak Anion Exchange and Ultraviolet Photodissociation Mass Spectrometry with Strategic Modulation of Peptide Basicity for the Enrichment of Sulfopeptides. Anal Chem 2016; 88:11037-11045. [PMID: 27768275 DOI: 10.1021/acs.analchem.6b02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tyrosine sulfation is an important post-translational modification but remains difficult to detect in biological samples owing to its low stoichiometric abundance and the lack of effective enrichment methods. In the present study, weak anion exchange (WAX) is evaluated for the enrichment of sulfopeptides that have been modified via carbamylation to convert all primary amines to less basic carbamates. The decrease in basicity enhanced the binding of carbamylated sulfopeptides to WAX resin relative to nonsulfated peptides. Upon elution and electrospray ionization in the negative mode, ultraviolet photodissociation (UVPD) was applied for peptide sequencing. Application of the method to a tryptic digest of bovine coagulation factor V resulted in identification of sulfation on tyrosine 1513.
Collapse
Affiliation(s)
- Michelle R Robinson
- Department of Chemistry, The University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
14
|
Li P, Hoffmann WD, Jackson GP. Multistage Mass Spectrometry of Phospholipids using Collision-Induced Dissociation (CID) and Metastable Atom-Activated Dissociation (MAD). INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2016; 403:1-7. [PMID: 27547107 PMCID: PMC4987003 DOI: 10.1016/j.ijms.2016.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We herein demonstrate an approach to gas phase ion manipulation that provides MS3-level CID spectra of phospholipid radical cations that are almost independent of the original charging adduct ions. In the MS2 He-MAD spectra of the protonated, sodiated and potassiated adducts of POPC, the different adducts induce different primary fragmentation pathways and provide significantly different spectra, as is commonly observed by other activation methods. In separate experiments, the even-electron adduct ions ([M+H]+, [M+Na]+, [M+K]+) of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) were first converted to radical cations [POPC]+• by using helium metastable atom-activated dissociation (He-MAD) to eject the charging adduct ions, then exposed to low-energy collision induced dissociation (CID) to induce extensive fragmentation along the acyl chains. Such charge-remote fragmentation is generally inaccessible through low-energy CID of the even-electron precursor ions. The combination of He-MAD and CID provides radical-induced spectra that show very major similarities and only minor differences, and therefore overcomes major differences in chemistry that are otherwise observed by the original adducting species. Collisional activation of even-electron [POPC+H]+ required higher CID amplitudes than odd-electron [POPC]+• to effect fragmentation-as expected-and the latter provided fragments within the acyl chains that were influenced by the double bond position.
Collapse
Affiliation(s)
- Pengfei Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - William D. Hoffmann
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506-6121, USA
| | - Glen P. Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506-6121, USA
| |
Collapse
|
15
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
16
|
Deimler RE, Sander M, Jackson GP. RADICAL-INDUCED FRAGMENTATION OF PHOSPHOLIPID CATIONS USING METASTABLE ATOM-ACTIVATED DISSOCIATION MASS SPECTROMETRY (MAD-MS). INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 390:178-186. [PMID: 26644782 PMCID: PMC4669893 DOI: 10.1016/j.ijms.2015.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The fragmentation pattern of several protonated 1+ phosphatidylcholines (PCs) were studied using low energy collision induced dissociation (CID) and helium metastable atom-activated dissociation (He-MAD). He-MAD of the protonated compounds produced a dominant phosphocholine head group at m/z 184 as well as typical sn-1 and sn-2 glycerol fragments such as [M+H-Rx-1CHC=O]+ and [M+H-Rx-1CO2H]+. Within the aliphatic chain, He-MAD showed fragments consistent with high-energy collision induced dissociation (HE-CID) and products/pathways consistent with Penning ionization of the 1+ precursor ions to their respective radical dications. These Penning ionization products included both singly and doubly charged radical fragments, and the fragment ions are related to the number and position of double bonds in the acyl chains. Fragments created through HE-CID-like fragmentation followed classic charge remote fragmentation pathways including ladder-like fragmentation along the acyl chain, except for additional or missing peaks due to predictable rearrangement reactions. He-MAD therefore shows utility in being able to effectively fragment singly charged lipids into a variety of useful product ions using both radical and high-energy processes in the confines of a 3D ion trap.
Collapse
Affiliation(s)
- Robert E. Deimler
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | | | - Glen P. Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
- Department of Forensic & Investigative Science, West Virginia University, Morgantown, WV, 26506-6121
- Corresponding Author. Correspondence to: Glen P. Jackson, , 305-293-9236
| |
Collapse
|
17
|
Chicooree N, Unwin RD, Griffiths JR. The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications. MASS SPECTROMETRY REVIEWS 2015; 34:595-626. [PMID: 24737647 DOI: 10.1002/mas.21421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
This review describes some of the more interesting and imaginative ways in which mass spectrometry has been utilized to study a number of important post-translational modifications over the past two decades; from circa 1990 to 2013. A diverse range of modifications is covered, including citrullination, sulfation, hydroxylation and sumoylation. A summary of the biological role of each modification described, along with some brief mechanistic detail, is also included. Emphasis has been placed on strategies specifically aimed at detecting target modifications, as opposed to more serendipitous modification discovery approaches, which rely upon straightforward product ion scanning methods. The authors have intentionally excluded from this review both phosphorylation and glycosylation since these major modifications have been extensively reviewed elsewhere.
Collapse
Affiliation(s)
- Navin Chicooree
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- School of Chemistry, University of Manchester, Brunswick Street, Manchester, M13 9SU, UK
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - John R Griffiths
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
18
|
Donohoe GC, Khakinejad M, Valentine SJ. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:564-576. [PMID: 25510931 DOI: 10.1007/s13361-014-1045-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.
Collapse
Affiliation(s)
- Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | | |
Collapse
|
19
|
Hoffmann WD, Jackson GP. Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1939-43. [PMID: 25231159 DOI: 10.1007/s13361-014-0989-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 05/04/2023]
Abstract
A kiloelectronvolt beam of helium ions is used to ionize and fragment precursor peptide ions starting in the 1+ charge state. The electron affinity of helium cations (24.6 eV) exceeds the ionization potential of protonated peptides and can therefore be used to abstract an electron from--or charge exchange with--the isolated precursor ions. Kiloelectronvolt energies are used, (1) to overcome the Coulombic repulsion barrier between the cationic reactants, (2) to overcome ion-defocussing effects in the ion trap, and (3) to provide additional activation energy. Charge transfer dissociation (CTD) of the [M+H](+) precursor of Substance P gives product ions such as [M+H](2+•) and a dominant series of a ions in both the 1+ and 2+ charge states. These observations, along with the less-abundant a + 1 ions, are consistent with ultraviolet photodissociation (UVPD) results of others and indicate that C-C(α) cleavages are possible through charge exchange with helium ions. Although the efficiencies and timescale of CTD are not yet suitable for on-line chromatography, this new approach to ion activation provides an additional potential tool for the interrogation of gas phase ions.
Collapse
Affiliation(s)
- William D Hoffmann
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, 26506, USA
| | | |
Collapse
|
20
|
Robinson MR, Moore KL, Brodbelt JS. Direct identification of tyrosine sulfation by using ultraviolet photodissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1461-71. [PMID: 24845354 PMCID: PMC4108549 DOI: 10.1007/s13361-014-0910-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/30/2014] [Accepted: 04/05/2014] [Indexed: 05/25/2023]
Abstract
Sulfation is a common post-translational modification of tyrosine residues in eukaryotes; however, detection using traditional liquid chromatography-mass spectrometry (LC-MS) methods is challenging based on poor ionization efficiency in the positive ion mode and facile neutral loss upon collisional activation. In the present study, 193 nm ultraviolet photodissociation (UVPD) is applied to sulfopeptide anions to generate diagnostic sequence ions, which do not undergo appreciable neutral loss of sulfate even using higher energy photoirradiation parameters. At the same time, neutral loss of SO₃ is observed from the precursor and charge-reduced precursor ions, a spectral feature that is useful for differentiating tyrosine sulfation from the nominally isobaric tyrosine phosphorylation. LC-MS detection limits for UVPD analysis in the negative mode were determined to be around 100 fmol for three sulfated peptides, caerulein, cionin, and leu-enkephalin. The LC-UVPD-MS method was applied for analysis of bovine fibrinogen, and its key sulfated peptide was confidently identified.
Collapse
Affiliation(s)
- Michelle R Robinson
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, 78712, USA
| | | | | |
Collapse
|
21
|
Smith SA, Kalcic CL, Cui L, Reid GE. Femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fsLID-MS/MS) of deprotonated phosphopeptide anions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2807-2817. [PMID: 24214867 DOI: 10.1002/rcm.6750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Radical-directed dissociation techniques provide structural information which is complementary to that from conventional collision-induced dissociation (CID). The analysis of phosphopeptide anions is warranted due to their relatively acidic character. As femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fsLID-MS/MS) is uniquely initiated by field ionization, an investigation is warranted to determine whether fsLID may provide novel analytical utility for phosphopeptide anions. METHODS Twenty-three synthetic deprotonated phosphopeptide anions were introduced into a three-dimensional quadrupole ion trap mass spectrometer via electrospray ionization. The ion trap was interfaced with a near-IR (802 nm) ultrashort-pulsed (35 fs FWHM) ultrahigh-powered (peak power ~10(14) W/cm(2)) laser system. Performance comparisons are made with other techniques applied to phosphopeptide anion analysis, including CID, electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), activated electron photodetachment dissociation (activated-EPD), and ultraviolet photodissociation (UVPD). RESULTS FsLID-MS/MS of multiply deprotonated phosphopeptide anions provides sequence information via phosphorylation-intact a/x ions in addition to other sequence ions, satellite ions, and side-chain losses. Novel fragmentation processes include selective c-ion formation N-terminal to Ser/Thr and a phosphorylation-specific correlation between xn -98 ion abundances and phosphorylation at the n(th) residue. Sequencing-quality data required about 30 s of signal averaging. fsLID-MS/MS of singly deprotonated phosphopeptides did not yield product anions with stable trajectories, despite significant depletion of the precursor. CONCLUSIONS Multiply deprotonated phosphopeptide anions were sequenced via negative-mode fsLID-MS/MS, with phosphosite localization facilitated by a/x ion series in addition to diagnostic x(n)-98 ions. fsLID-MS/MS is qualitatively competitive with other techniques. Further efficiency enhancements (e.g., implementation on a linear trap or/and higher pulse frequencies) may permit sequence analyses on chromatographic timescales.
Collapse
Affiliation(s)
- Scott A Smith
- RTSF Mass Spectrometry & Metabolomics Core, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
22
|
Chingin K, Makarov A, Denisov E, Rebrov O, Zubarev RA. Fragmentation of positively-charged biological ions activated with a beam of high-energy cations. Anal Chem 2013; 86:372-9. [PMID: 24236851 DOI: 10.1021/ac403193k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
First results are reported on the fragmentation of multiply protonated polypeptide ions produced in electrospray ionization mass spectrometry (ESI-MS) with a beam of high-energy cations as a source of activation. The ion beam is generated with a microwave plasma gun installed on a benchtop Q Exactive mass spectrometer. Precursor polypeptide ions are activated when trapped inside the collision cell of the instrument (HCD cell), and product species are detected in the Orbitrap analyzer. Upon exposure to the beam of air plasma cations (∼100 μA, 5 s), model precursor species such as multiply protonated angiotensin I and ubiquitin dissociated across a variety of pathways. Those pathways include the cleavages of C-CO, C-N as well as N-Cα backbone bonds, accordingly manifested as b/y, a, and c/z fragment ion series in tandem mass spectra. The fragmentation pattern observed includes characteristic fragments of collision-induced dissociation (CID) (b/y/a fragments) as well as electron capture/transfer dissociation (ECD, ETD) (c/z fragments), suggesting substantial contribution of both vibrational and electronic excitation in our experiments. Besides backbone cleavages, notable amounts of nondissociated precursor species were observed with reduced net charge, formed via electron or proton transfer between the colliding partners. Peaks corresponding to increased charge states of the precursor ions were also detected, which is the major distinctive feature of ion beam activation.
Collapse
Affiliation(s)
- Konstantin Chingin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheeles väg 2, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
Han SW, Lee SW, Bahar O, Schwessinger B, Robinson MR, Shaw JB, Madsen JA, Brodbelt JS, Ronald PC. Tyrosine sulfation in a Gram-negative bacterium. Nat Commun 2013; 3:1153. [PMID: 23093190 DOI: 10.1038/ncomms2157] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/14/2012] [Indexed: 01/03/2023] Open
Abstract
Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here, we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry to demonstrate that RaxST catalyses sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity) protein. These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications for studies of host immune responses and bacterial cell-cell communication systems.
Collapse
Affiliation(s)
- Sang-Wook Han
- Department of Plant Pathology and the Genome Center, University of California, One Shields Ave, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mandal MK, Saha S, Yoshimura K, Shida Y, Takeda S, Nonami H, Hiraoka K. Biomolecular analysis and cancer diagnostics by negative mode probe electrospray ionization. Analyst 2013; 138:1682-8. [PMID: 23348832 DOI: 10.1039/c3an36554a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have examined several combinations of solvents and probes with the aim of optimizing the ionization conditions for biomolecules e.g., proteins, peptides and lipids by negative mode probe electrospray ionization mass spectrometry (PESI-MS). With the data presented in this study, negative-mode PESI-MS can be considered as a potential tool for biomolecular analysis and cancer diagnostics because of its simplicity in instrumental configuration. A sharper sampling probe was found to be better for obtaining high quality mass spectra because it can generate stable electrospray without the occurrence of gas breakdown. Although the best conditions may depend on each sample, aqueous organic solvent solutions, especially isopropanol-H(2)O (1/1) with a pH of ≥7, are shown to be preferable for negative-mode PESI-MS, which was successfully applied to colon cancer diagnosis.
Collapse
Affiliation(s)
- Mridul Kanti Mandal
- Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511 Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Shaw JB, Madsen JA, Xu H, Brodbelt JS. Systematic comparison of ultraviolet photodissociation and electron transfer dissociation for peptide anion characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1707-15. [PMID: 22895858 PMCID: PMC4460832 DOI: 10.1007/s13361-012-0424-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/19/2012] [Accepted: 05/20/2012] [Indexed: 05/10/2023]
Abstract
Ultraviolet photodissociation at 193 nm (UVPD) and negative electron transfer dissociation (NETD) were compared to establish their utility for characterizing acidic proteomes with respect to sequence coverage distributions (a measure of product ion signals across the peptide backbone), sequence coverage percentages, backbone cleavage preferences, and fragmentation differences relative to precursor charge state. UVPD yielded significantly more diagnostic information compared with NETD for lower charge states (n ≤ 2), but both methods were comparable for higher charged species. While UVPD often generated a more heterogeneous array of sequence-specific products (b-, y-, c-, z-, Y-, d-, and w-type ions in addition to a- and x- type ions), NETD usually created simpler sets of a/x-type ions. LC-MS/UVPD and LC-MS/NETD analysis of protein digests utilizing high pH mobile phases coupled with automated database searching via modified versions of the MassMatrix algorithm was undertaken. UVPD generally outperformed NETD in stand-alone searches due to its ability to efficiently sequence both lower and higher charge states with rapid activation times. However, when combined with traditional positive mode CID, both methods yielded complementary information with significantly increased sequence coverage percentages and unique peptide identifications over that of just CID alone.
Collapse
Affiliation(s)
- Jared B. Shaw
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| | - James A. Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| | - Hua Xu
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, BRB 9 Floor, Cleveland, OH, USA 44106
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
- Correspondence to:
| |
Collapse
|
26
|
Cantel S, Brunel L, Ohara K, Enjalbal C, Martinez J, Vasseur JJ, Smietana M. An innovative strategy for sulfopeptides analysis using MALDI-TOF MS reflectron positive ion mode. Proteomics 2012; 12:2247-57. [DOI: 10.1002/pmic.201100525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et 2; Montpellier France
| | - Luc Brunel
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et 2; Montpellier France
| | - Keiichiro Ohara
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et 2; Montpellier France
| | - Christine Enjalbal
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et 2; Montpellier France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et 2; Montpellier France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et 2; Montpellier France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1 et 2; Montpellier France
| |
Collapse
|
27
|
Hersberger KE, Håkansson K. Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation. Anal Chem 2012; 84:6370-7. [PMID: 22770115 DOI: 10.1021/ac301536r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Positive ion mode collision-activated dissociation tandem mass spectrometry (CAD MS/MS) of O-sulfopeptides precludes determination of sulfonated sites due to facile proton-driven loss of the highly labile sulfonate groups. A previously proposed method for localizing peptide and protein O-sulfonation involves derivatization of nonsulfonated tyrosines followed by positive ion CAD MS/MS of the corresponding modified sulfopeptides for diagnostic sulfonate loss. This indirect method relies upon specific and complete derivatization of nonsulfonated tyrosines. Alternative MS/MS activation methods, including positive ion metastable atom-activated dissociation (MAD) and metal-assisted electron transfer dissociation (ETD) or electron capture dissociation (ECD) provide varying degrees of sulfonate retention. Sulfonate retention has also been reported following negative ion MAD and electron detachment dissociation (EDD), which also operates in negative ion mode in which sulfonate groups are less labile than in positive ion mode. However, an MS/MS activation technique that can effectively preserve sulfonate groups while providing extensive backbone fragmentation (translating to sequence information, including sulfonated sites) with little to no noninformative small molecule neutral loss has not previously been realized. Here, we report that negative ion CAD, EDD, and negative ETD (NETD) result in sulfonate retention mainly at higher charge states with varying degrees of fragmentation efficiency and sequence coverage. Similar to previous observations from CAD of sulfonated glycosaminoglycan anions, higher charge states translate to a higher probability of deprotonation at the sulfonate groups thus yielding charge-localized fragmentation without loss of the sulfonate groups. However, consequently, higher sulfonate retention comes at the price of lower sequence coverage in negative ion CAD. Fragmentation efficiency/sequence coverage averaged 19/6% and 33/20% in EDD and NETD, respectively, both of which are only applicable to multiply-charged anions. In contrast, the recently introduced negative ion ECD showed an average fragmentation efficiency of 69% and an average sequence coverage of 82% with complete sulfonate retention from singly- and doubly-deprotonated sulfopeptide anions.
Collapse
Affiliation(s)
- Katherine E Hersberger
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
28
|
Cook SL, Zimmermann CM, Singer D, Fedorova M, Hoffmann R, Jackson GP. Comparison of CID, ETD and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:786-794. [PMID: 22707171 DOI: 10.1002/jms.3023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The fragmentation behavior of the 2+ and 3+ charge states of eleven different phosphorylated tau peptides was studied using collision-induced dissociation (CID), electron transfer dissociation (ETD) and metastable atom-activated dissociation (MAD). The synthetic peptides studied contain up to two known phosphorylation sites on serine or threonine residues, at least two basic residues, and between four and eight potential sites of phosphorylation. CID produced mainly b-/y-type ions with abundant neutral losses of the phosphorylation modification. ETD produced c-/z-type ions in highest abundance but also showed numerous y-type ions at a frequency about 50% that of the z-type ions. The major peaks observed in the ETD spectra correspond to the charge-reduced product ions and small neutral losses from the charge-reduced peaks. ETD of the 2+ charge state of each peptide generally produced fewer backbone cleavages than the 3+ charge state, consistent with previous reports. Regardless of charge state, MAD achieved more extensive backbone cleavage than CID or ETD, while retaining the modification(s) in most cases. In all but one case, unambiguous modification site determination was achieved with MAD. MAD produced 15-20% better sequence coverage than CID and ETD for both the 2+ and 3+ charge states and very different fragmentation products indicating that the mechanism of fragmentation in MAD is unique and complementary to CID and ETD.
Collapse
Affiliation(s)
- Shannon L Cook
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701-2979, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kim JS, Song SU, Kim HJ. Simultaneous identification of tyrosine phosphorylation and sulfation sites utilizing tyrosine-specific bromination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1916-1925. [PMID: 21952757 DOI: 10.1007/s13361-011-0214-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
Tyrosine phosphorylation and sulfation play many key roles in the cell. Isobaric phosphotyrosine and sulfotyrosine residues in peptides were determined by mass spectrometry using phosphatase or sulfatase to remove the phosphate or the sulfate group. Unique Br signature was introduced to the resulting tyrosine residues by incubation with 32% HBr at -20 °C for 20 min. MS/MS analysis of the brominated peptide enabled unambiguous determination of the phosphotyrosine and the sulfotyrosine sites. When phosphotyrosine and sulfotyrosine as well as free tyrosine were present in the same peptide, they could be determined simultaneously using either phosphatase or sulfatase following acetylation of the free tyrosine.
Collapse
Affiliation(s)
- Jong-Seo Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | |
Collapse
|
30
|
Yoo HJ, Wang N, Zhuang S, Song H, Håkansson K. Negative-Ion Electron Capture Dissociation: Radical-Driven Fragmentation of Charge-Increased Gaseous Peptide Anions. J Am Chem Soc 2011; 133:16790-3. [DOI: 10.1021/ja207736y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hyun Ju Yoo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ning Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Shuyi Zhuang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hangtian Song
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|